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ABSTRACT

Dynamics in vildlife populatiors emerge from the interactions between individuals and
their environmentConstraing between individual nutrition anfdod availability are
thereforefundamental to understaing how species adapt tenvironmental variability

and to identiy mechanisracontrolling populatiodevel processes. Brown bedtdrsus
arctog exhibit a wide variety of life history traits acrossdistributiontha maybea
consequence dfifferences in theidiet. Amount and quality of nutritional resources
influence individual energy storage andtblays a central roleén female reproductive
success. Using energetic simulations models | integrated existindddynuof

energeticand nutritionto explore how the interactions among the ecology and
physiology of brown bears, and the nutritional
mass and thus reproductive succ@é® model simulates the transfer of energy and
proteinfrom the environment to the individual, accounting for allocation in maintenance,
growth and reproductioriResults reveal that: lean tissue and high protein foods play a
fundamental rolén reproductive succes$ loears. The relationship between protein
available early in the season and energy available late in the season determine the
allocaton of nutrients in growth and reproductiandthusinfluence life history traits

such as body siz&linimum levels of fat reserves necessary to support reproduction
during hibernation varied from9% to 33%of thetotal body masslependingpnthe

number of cubs and length of lactation. Howewdrennutritional environmentarepoor
(resource limiting)actating bearsequirehigher levels of denning body fat to support
lactation after den emergence. Interactions between the digestive tract capacity of bears

and food resourcguality limit mass gairn bearsand thus female repductive success.



Results reveal that brown bear populations in Albertaiesteictedby the nutritional

quality of its environmenf(This hastwo managemertonsequencdsor Al ber t ad s
threatened populatiol) it limitsthe carrying capacity of beamsaulting in small

population sizesand(2) rate of populatiomecoverywill be slower than what has been
observed in other populations such as the Greater Yetloe$tcosystenThis study

provides insight intdhow nutritional factors control reproductivaccessn brown bears

how thisultimatelyaffectspopulation processes.
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CHAPTER 1
INTRODUCTORY CHAPTER

1. INTRODUCTION

Why do speciesccupy particular ecosysterfis
Why do conspecifics differ in life history traitsamong populatiors
What are lhe factors driving population dynamics?
How will speciesrespond to landscape change?

These arecorequestions inthe disciplines oécology and wildlife management. Better
understandhese questions,deefer knowledgeis needeaf howanimalsintera¢ with
their environmentRobbins, 1993Schwartz and Hobbs, 1998arbosa et al., 2009)

A basic element of these interactions is thidiving organisms must transfenergy and
matterfrom their environmento themselve# orderto live and reprduce(Robbins

1993 Lovegrove 2006). Energy is the fuel used in all chemical reactions that support life
(Stevenson2006; Barbosa et al. 200@)dproteinsarethe main component of the
structuralbody massandenzymatic activity in animals (RobbirE993; Caolin 2004).
Environmental factors (e.g. food availability .
characteristics (e.gnetabolic demands, digestive capacity) constrain these energetic
flows, thereby affectingie supply of energy and protein essaries for maintenance,
growth and reproduction. Because these constraints directly influence survival and
reproduction they have potential to shape life history traits and differentiate populations
(GarlandandCarter, 1994; Barboza et al., 2009).

Studes of wildlife nutrition and energet&canprovide amechanitic perspective of how
wildlife andhabitat interact and iesffecton individual fitness. Wdlife nutrition links
the nutrients demands of the organism with the nutrients supplies frorhabéat

(Barbosa et al., 200Raubenheimer et al., 200®stablishing the physiological elements



that are critical to life (Robbins, 1993). Energetic studfesnassess the rate and at
which individuals assimilate energy from the environment to suppairitenance,
growth and reproduction, accounting for the constraints in energy acquisition and

allocation (Kooijman, 20005tevenson, 2006).

Together, thesapproachehave revealed that individual nutrition and energetic

constraints influence reprodimt, behaviour and survival through different mechanisms.

In mammals, reproduction isfluenced by the nutrients (fat, protein and mineral) content

of the motherdés body which passes to her offsp
Energy and nutrient reqqeements, in combination with the spatiamporal distribution

of food resources, influence food habits and foraging betiagimbbins, 1993; Nielsen

et al., 2010; Coogan et al., Z)1Individual survival is affected by the body reserves

(lipid and prokin) that can be used in fasting perio@adlin, 2004; Dunn et al., 1982;

McCue, 201), and low nutritional conditions increase vulnerability to disease and

predation Robbins, 1993Barbosa et al 2009

In my dissertation | have used brown beaéfss(isarctog as a focal species to explore
how constrairgin energy and nutrient acquisition and allocation influence reproductive
success antlink this to population processesuch as population density, carrying
capacity andyrowthrates.In this introdudory chapterl first presenbackground
information necessary to understand the ecology and physiology of browrabddrsw
thisinfluencesindividual nutrition and energescl follow this by presenihg the main

guestions and objectives of my reseaxnl how they are organized ingkdocument.

1.1 Brown bears

Brown beas areone of most extensively distributed large carndiarthe world,
occupying a wide range of hab#ditom tundra deserind montane environmertts
temperate forest (McLellan at., 2008;McCarthy et al., 200Bojarska and Selva,
2011). Bear populations exhibit a variety of life history tratech as body size, litter

size, age of first litter pmiparity (age of first litter) anéhter-litter interval (Hilderbrand



et al., 199b; Ferguson and McLoughlin, 20@kdrosser et al2009; 201). Differences

in life history traits might be highly influenced by the spatial and temporal variability in
food resources, which ultimately constraint the energy and protein intake an@ storag
necessary to support reproduction (Farley and Ropb@85; Bojarska and Selva, 2011,
LépezAlfaro et al, 2013 Nielsen et a].2013.

A critical energetic bottleneck faced by all reproductive ferbadevnbears is the
hibernation or denning phasehe cenning period generally extembetween 120 to 210
days depending dimod availability (Farley and Robbins, 1995; Friebe et al., 2001;
Schwartz et al., 2003; Hilderbrand et al., 2000). During this phase, bears stop eating,
reduce their activity and mimize their protein catabolism to decrease energetic costs
(Watts and Jonkel, 1988; Barboza et al., 1997; Tgien et al., 2011; Robbins et al., 2012a).
Throughout this phase, lactating females give birth and start nourishment. Litter size
variesbetween 1 ah 3 cubs, and depending on maternal denning body fat content
nourishmenof cubs through lactatiotan last for 60 tGd4 daysduring hibernation

(Robbins et al., 2012b). To support maintenance and reproduction costs during
hibernation, bears use the faddean mass accumulated during the active period (Farley
and Robbins, 1995; Robbins et al., 2012b).

Brown bears accumulate lean mass during the spring and early summer, while fat reserve
is accumulated during late summer and early fall (Hilderbranld, 4i999a; Felicetti et

al., 2003). Fat mass gainbdforeto hibernation has been recognized as a key factor in
thereproductive success beargAtkinson and Ramsay, 1995; Atkinson et al., 1996;
Farley and Robbins, 1995; Hilderbrand et al., 2000; Rabétiral., 2012b Energy

storage as fat provides approximately seven times more energy than energy storage as
lean mass (Blaxter, 1989). However, lean tissue provides the protein necessary for fetus
develop and milk production (Blaxter989; Robbins, 1993-arley and Robbins, 1995;
Molnéret al., 2009)Consequently, lean mass gairteforeto hibernation alsbas an
important role in reproductive success (Lépdfaro et al., 2013). Despite the

importance of body resersen female reproductive succebtle is known about

minimum thresholds of fat and lean mass necggeasupport reproduction and how

these vanamongenvironmentgypical of current brown bear range



The nutritional quality of food resources available affects the energy and privédie i
and therefore affecthereproductive success bears Brown bears have an omnivorous
foraging strategy (Robbins et,@&004;2006), and depending on food availability, bear
diets can go from largely carnivorous to largely herbivorous (Hildertetiald, 1999b;
Bojarska and Selva, 201.number ofstudies havehownhow food resources
influence life history traitén bears Hilderbrand et al. (1999b) found that the proportion
of mesat, especially salmorgncorhynchus spp has a direct impact iiemale body size,
litter size and population density. But in a similar analysis, McLellan (2011) found that
when populationbavingaccess to salmon are excluded from this analgsisunt of
dietary met is negativdy correlatedo population density. laddition, primary
productivity and seasonality influence reproductive traits suelg@®fprimiparity and
inter-birth interval (Ferguson and McLoughlin, 2000).

Food habits and nutritional studies have been among the first steps taken to understand
bear-habitat relationships (Mattson et al., 1991; Hovey and McLellan, 1995; Munro et al.,
2006; Fortin et al., 2013%tudies of 6od habitoftendescribe changes in diet

composition (food items) through the active periotiile nutritional studies measutke

energy and protein contents for different bear food items such as: ungulates, salmon,
berries, ants, green vegetation, mushrooms, roots and nuts (Hamer and Herrero, 1987;
Pritchard and Robbins, 1990; Noyce et al., 1997; Welch et al., 1997; Swenkdi9é0a

Rode et al., 2001; Mattson et al., 2004; Coogan et al., 2012). These studies, however, do
not provide a nutritional evaluation for the complete diet, which has limited our capacity
to compareamongecosystems anghderstandhe nutritional mechaairs affectingthe

reproductive success bears andhusdifferences irlife history traits

Nutritional quality ofthebear diettogether with bear physiological factpe®nstrairs

the total energy and protein assimilated and therefore infladiboessin bears

Necessary food intake is based on energy and protein requirements, which increase with
reproduction (Robbins, 1993). Energy maintenance cost depends on the individual body
mass (McNab, 200&nd for brown bears this cost increases franB8limes depending

on the diet protein content (Pritchard and Robbins 1888@g et al., 200(elicetti et al.,



2003; Robbins et al., 200Erlenbach et al., 2@). Protein maintenance cost depends on
the metabolic body mass (EUN, Robbins, 1993) and dnematike (MFN, Pritchard
and Robbins, 1989). Digestive tract capacity in relatdiood digestibility, limits the

rate of nutrient intake (Robbins, 1993; Barbosa et al., 2009). Finally, the spatial
distribution of food resources determines foragingcifficy (Welch et al., 1997; Rode et
al., 2001; Robbins et al., 2007).

Physiological and nutritional elements influencing bear body mass dysiafhience
reproductive success bearsand therefore affect population dynamiSeveraktudies

have highightedthe importance of food resources on brown bear reproductive success
and population dynamidiflderbrand et al., 1999b; Ferguson and McLoughlin, 2000;
McLellan, 2011; Nielsen et al., 2010; 201Biitle has been done, however,imbegrate
different apecs of brown bear physiology anteir nutritional landscapan

understanithg the mechanissinfluencing bear body mass dynamiimder different

environmental conditions.

1.2 Brown bears in Alberta

In 2010the brown bear population in Alberta wastikd asa threatened species due to
their small population siz€-700 bears)life history attributes and the potential negative
impacts of human interventions in bear habif&SRD and ACA, 201D Bear
populations are limited to the western part of thevimice associated with the foothills,
mountains and western boreal forest (Munro et al.,, 2006). Alberta populdiffes
dramatically in individual density (4.8 to 18.1 bear/100G)kamd body condition (ASRD
and ACA, 2010).Differencesin population desity are also observed in areas outside
Alberta. In southwest British Columbia, bear density is535individuals/1000 ki
(McLellan 2011; Zedrosser et al., 2011) andha Yellowstoneecosystem (USA) it is
13-16 individuals/1000knt (Zedrosser edl., 20L1).

Lower population densities in Alberta may be a consequence of two prodéssteshe

limited concentration of nutritioutood resources (e.glack of salmon or low berry



production),and a short growing seas@unro et al., 2006)imit the stor of lean and
fat massheforeto denning, affecting maternedproductive success. Second, the increase
in mortality rates due to habitat disturbances.g( forest harvesting, energy

developments, road buildinttielsen et al. 2003 Nielsenet al. 2008).

Over the past decadmimeroushabitat studies have increased our knowledge of brown
bearhabitat interactions in Albert@unro et al. 2006; Nielsen et &003,2004, b, ¢

2006, 200). Recent emphasis h&scussedn assessing nutritional landscaplglsen

et al. 2010) and relating this to individual body condition, reproductive success and
population dynamics (Nielsen et al., 2013jJowever, studies that link individual
energetic requirements and nutritional landscape to population level phenoavenaot

been fully explored. This knowledge is necessary to dgfmeilationrecovery targets in
Alberta, together with impromg land management plans.

1.3 Dissertation Outline

In this dissertation | have explored how key elements in the physiofdgpwn bears

and thé nutritional landscape interact to affect reproductive success. To reach this goal |
built two mechanistic simulation models. First, is a Nutritional Landscape model (NL
model) that simulates the temporal changes in the digestittieip (kg) and energy

(kcal) available in one kilogram of fresh diet. These diets represent the combination of
different food items (e.gberries, vegetation, ungulateshong ecosystems by
approximating the average food habits of bears in Alberta (Metraib, 2006), Flathead
(McLellan and Hovey1995) and Yellowstone (Mattson et al., 1991; Fortin et al., 2013).
Second, is an energetic modehtintegrates brown bear physiology and ecology with
nutritional landscape information to simulate the dadgypmass dynamics (fat and lean
mass gain/loss) of brown bears. During hibernation, body mass dynamics depends on
maintenance and reproduction @3throughout the active period, the model
incorporates daily nutritional intake using the diet informatromfthe NL model. The

model operates oa set ofscenarioseflectingreproductive strategs (non



lactating/lactating, litter size, lactation period) and environmental consltidimernation

length, bear diets)sing a set initial body condition

| used thesemodels to explore threguestions | n Chapter 2 (fAEnergetic c
and reproductivetradef f s i n brown bearso) Isanddenti fied tF
reproductive energetic cadbr lactating bears during hibernation. For this pueplogsed

the energetemodel in the hibernation phaseaddresshree specifiquestionsl) what

arethe energetic tradeffs for hibernating female brown bears, 2) hidoes

environmental variability affect reproductive success based on maternal @onditi

lactation period, litter size and hibernation length andt&t arehe minimumbody fat

requirements necesgao support reproduction under differdribernationlengtts.

I n Ch a Adgsessing tBe n(tiitional quality of brown bears diets anmegor
ecosystems in NorthAmerica) | evaluate the nutritional qual
used the NL model tasktwo specificquestionsl) what are the differences mutritional

guality (e.g.,amountof digestible protein and energy) of beartgli@ westcentral

Alberta, the Flathead, and both the histalr{@977- 1987) and recent (20072009) diet

in the Great Yellowstone ecosysteamd 2)whatfood resourceare most criticafor

providing energy and protein to bears in each ecosystem.

INnChapter 4 (fALinking individual nutrition to b
perspectived) | wused the energetics model (fro
period) to explore three specific questions: 1) what are the energy and protein

requiremats of bears during the active period; 2) what are the-ofideand key

elements of bear physiology and nutritional quality of foods available that influence body

mass dynamics; and 3) what is the impact of Al

succes of bears and population recovery.

Finally, Chapter Sepresents the conclus®chapter wheré summarize the results and
management implicati@of my research. | also discuss their implications in a lmoad
framework suggesting future reseatopics Thisdissertation s structured as HAPap

F o r m@hapiers 2, 3 and 4 have been formatted for Journal of Ecological Modelling.
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CHAPTER 2!

ENERGETICS OF HIBERN ATION AND REPRODUCTI VE
TRADE-OFFS IN BROWN BEARS

1. INTRODUCTION

Mat ernal fitness is partly a function of a mot
from the environment to her offispg (Brown et al., 1993; Lovegrove, 2006).

Environmental factors (e.g. food availability)
metabolic demands) constrain this energy flux (Lovegrove, 2006). Reproduction

constitutes one of the most expensive energetic desnia mammals, and lactation is

more costly than gestation (Robbins, 1993; Stearns 1992). Thus, strategies used to

allocate reproductive energy in different environments should be under strong selection

and have the potential to differentiate populati®erboza et al., 2009; Garland and

Carter, 1994).

Brown bear (rsus arcto¥ reproductivecosts are especially high becausealike most

mammals, fetal and early neonatal growth occurs after the female has entered the winter
den and begun fasting (Atkinsand Ramsay, 1995; Farley and Robbins, 1995; Oftedal

et al., 1993; Ramsay and Dunbrack, 1986). To support these energetic costs, bears rely on
fat and lean reserves accumulated during their activehib@mnating period (Atkinson

and Ramsay, 1995; Farlepd Robbins, 1995). Limitations to the accumulation of fat

mass and lean mass (muscle tissue) during the active period may therefore restrict
reproductive investments resulting in variations in litter size and length of lactation

during hibernation (Robbs et al., 2012b). By identifying the major energetic traffe

L A version of this chapter has been published épetzAlfaro C, Robbins CT, Zedrosser A,
Nielsen SE. Energetic of hibernation and reproductive {cdidein Brown Bears. Ecological
Modelling 2013;270:410
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in reproduction, we can better understand how bears have adapted to different ecosystems

and thus predict their responses to environmental change.

Food resources vary both spatially andgenally (Coogan et al., 2012; Nielsen et al.,

2003; Nielsen et al., 2010). Brown bears have developed several adaptive strategies for
dealing with environmental uncertainties in resource supply, which ultimately affects
maternal body condition and repradive effort. For example, females that are too lean

(< 20% body fat) at the start of hibernation will not implant developing embryos, whereas
fat mothers will implant embryos, give birth earlier, and produce better or more milk than
lean mothers (Hissa997; Robbins et al., 2012b). Depending on maternal condition, the
date of implantation and thus birth can vary by 39 or more days (Bridges et al., 2011;
Robbins et al., 2012b). Thus, fatter mothers are able to nurse their cubs longer in the den
and therebyroduce larger cubs with a better chance of survival following den

emergence (Robbins et al., 2012b). Brown bear litter size commonly varies from 1 to 3
cubs, which may be a consequence of maternal condition, body size, age, and human
persecution histor{Zedrosser et al., 2011). Cubs born in larger litters are often smaller at
den emergence than those born in smaller litters (Derocher and Stirling, 1998; Farley and
Robbins, 1995; Robbins et al., 2012b). Total lactation cost may not, however, increase in
proportion to litter size, as the total ndwwrn mass of litters of triplets was 17% less than
that of twins (Robbins et al. 2012b). Consequently, the amount of milk produced by a
lactating female brown bear is likely determined by the amount of avaikd#eves that

exceed her own survival needs, and not by cub demand.

In bears, the proportion of legigsueversus fat reserves used to supply energy is largely
influenced by the body fat content at the time of denning (Atkinson and Ramsay, 1995;
Robbins,1993). When body fat reserves are high, the main source of energy is fat, but
when fat reserves are low, due either to inadequate active season food resources or
prolonged hibernation, lean mass is increasingly used as an energy source (Caolin 2004;
Dunnet al., 1982; McCue, 2010). Because of this, most hibernation studies have focused
on the role of fat in determining reproductive success (Atkinson and Ramsay, 1995;
Atkinson et al., 1996; Farley and Robbins, 1995; Hilderbrand et al., 2000). Little effort
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has been made to understand the role of protein reserves in affecting bear reproductive

success and the temporal processes oftissimeand fat depletion during hibernation.

Energetic costs of hibernating female brown bears depends on several fexdtwlisg):

(1) reproductive investment related to the number of cubs born, length of lactation in the
den and the amount and quality of milk produced, (2) maternal camelitien entering

the den determinfat and lean reserves available for selfvival axd reproduction, and

(3) length of hibernation. Although each of these factors iskmglivn, little is known

about the tradeffs between them. Due to the multitude of factors that affect the
energetic budget of bears, empirical approaches to assessegriddeffs is

impractical or difficult to implement. Model simulations have become an important tool
for understanding complex processes in ecology (Starfield, 1997;-Oméh, 2007),
determining key parameters in population dynamics (L&y&xzo etal., 2012;Mazari et

al., 2006;Starfield and Bleloch, 1991and exploring new scenarios including survival
thresholds (Fahrig, 1998; Hildenbrandt et al., 2006; Molnér et al., 2010; Wiegand et al.,
1998). In this study we developed a simulation modeil#rnating female brown bears
using published equations and parameters for individual energetic components. Our
objectives were to evaluate the energy and protein costs of reproduction for hibernating
female brown bears, to identify energetic traffis baween reproductive investment and
self-survival, and evaluate how these tradis might vary under different environmental
conditions. Variables assessed include maternal condition (denning body fat content),

length of lactation, litter size, and lengthhibernation.

2. METHODS

2.1 Model design and purpose

Energetic demands of hibernating females can be divided into maintenance and

reproductive costs. Energy maintenance cost (MtbHib) is a function of body mass (Table

1; Blaxter, 1989; Robbins et alQ22a; Tgien et al., 2011). During hibernation bears are

able to recycle the nitrogen from their urea and thus conserve protein (Barbosa et al.,
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1997; Tgien et al., 2011). In our model we therefore assumed no protein requirements for
physiological maintenar. For lactating bears, the energy and protein costs of fetal

growth and milk production were added to the expected maintenance cost-for non
lactating bears (see reproduction-sabdel). Tissue reserves that can be used to support
these costs were partitied into lean and fat mass. As long as abundant fat is available to
meet energy requirements, bears conserve protein during hiberrgditioZa et al.,

1997 Ramsay and Dunbrack, 1986). Energy stored as fat has nearly seven times more
energy than lean ass (energy content of fat: 9.1 kcal/g; lean mass: 1.2 kcal/g; Blaxter,
1989, Farley and Robbins, 1995). However, lean mass provides the protein used for
growth of the fetus and neonate (Caolin, 2004; Koijman, 2000; Molnar et al., 2009).

Our model simultes the energetic balance of hibernating bears by integrating the main

metabolic mechanisms that determine the use of lean and fat reserves during hibernation

for nontlactating and lactating bears (Fig. 1, Table 1). The model was developed in Stella

10 (Isee Systems, Inc., 2006) using a daily time step. Day one corresponds to den entry

and the final model simulation day corresponds to den emergence. Each day the model

accounts for the use of lean and fat reserves to supply the energy and protein costs of

hibernation using two separate pathways (i.e., one for lean and the other for fat). We used

an algorithm called fiDaily mass | oss compositi
each body component that is | ost Igneapsendi ng on
loss composition was parameterized based on the fit with other studies (see section 2.4).

Protein content of the lean mass was assumed to be 21.1% (Blaxter, 1989; Farley and

Robbins, 199). Because metabolic rate increases at the beginning arddhsf

hibernation (Friebe et al., 2013; Robbins et al., 2012b; Tgien et al., 2011,), we increase

MtbHib during the initial and final two weeks of hibernation to a maximum of 50%

above baseline rates.

2.2 Reproduction submodel

The reproduction sutmodelsimulates the energetic cost of gestation and lactation, which

vary with litter size and length of lactation. Gestation cost was assumed to be the cost of
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the growth of the fetus and gravid uterus. The cost of fetal growth was set at 80% of the
total gestion cost, while gravid uterus was the remaining 20% (Robbins, 1993). Costs
for fetal growth includes the energy used to maintain fetal tissues as well as the protein
and fat accumulated in growth. Because there was no available information on the body
conposition of neonatal brown bears, we used data from the closely related American

black bearUrsus americanuftedal et al., 1993).

Brown bears are delayed implanters that breed in May and June with the developing
embryos implanting for sufficiently fdoears by early November (Spady et al., 2007).

Small, altricial cubs are born in early January after a gestation period of 60 days (Ramsay
and Dunbrack, 1986; Robbins et al., 2012b). Neonatal mass varies fran#@8@ for
European brown bears (Hiss®9%) and up t®.650kg for North American brown bears
(Robbins et al., 2012b). In our simulations, we assumed the newborn body mass to be
constant at 0.650 kg (Robbins et al., 2012b). Because fetal growth across a wide range of
mammals follows a curvilire function that sharply increases during the final third of
pregnancy (Robbins, 1993), we distributed the energy and protein accumulated by cubs
during gestation to be proportional to this curve with an assumed gestation period of 60
days (Ramsay and Durdzk, 1986; Robbins et al., 2012b). We varied birth dates over a

14 day interval to explore the energetic costs of early and late births. Length of lactation
therefore varied from 60 to 74 days fgmergence and is defined by the initial model

condition.

Energy and protein demands for lactation were based on those reported in Farley and
Robbins (1995). Daily milk production per cub was multiplied by the number of cubs,
which was defined as the original litter size. We used this approach to explore why

lactating females do not seem to increase milk production in proportion to the number of

cubs (Robbins et al., 2012b). We included

represent the conversion efficiendwe of the

set the value to 85% (Blaxter, 1989).

a

m

mo t
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2.3 Initial model conditions

Initial inputs included maternal body mass (kg), initial body fat content (%), length of
hibernation (days), length of lactation (days), and number of cubs. Each condition is

describe below.

Body mass and initial body fat conteBbdy masses of the females were based on those
of Farley and Robbins (1995). Because we wanted to explore the energetuffisade
faced by hibernating bears of different body condition, we set leananh&66 kg and
varied initial body fat content from 20%, 30% and 4@énsequently, initial body

masses were 125, 143 and 167 kg, respectively.

Length of Hibernationin general, hibernation length increases with latitude (Johnson

and Pelton, 1980) with éhnumber of days ranging from 120 to 210 days (Schwartz et al.,
2003). We used the following four hibernation lengths to reflect this range: 120, 150, 180
and 210 days.

Length of lactation and number of cui® evaluate reproductive costs, we simudate
lactating bears with a litter size of either 1 or 2 cubs and birth at either 60 or 74 days
before den emergence. This resulted in the following five reproductive strategies: (1)
Non-lactating (NorLac.), (2) Lactating for 60 days and one cub (Lac. 66 dayub),

(3) Lactating for 60 days and two cubs (Lac. 60 days, 2 cubs), (4) Lactating for 74 days
and one cub (Lac. 74 days, 1 cub) and (5) Lactating for 74 days and two cubs (Lac. 74
days, 2 cubs). We did not simulate litterglofe cubs because laibba costs are similar

to that of twins (Robbins et al., 2012b).

24 Daily mass | oss compositiono algorithm, mod.

Most studies of hibernating bears have measured the average mass lost across the entire

hibernation period andalve related this to body fat content at den entry (Atkinson et al.,

1996; Farley antRobbins 1995; Robbins et al., 2012a). Because we were interested in
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exploring the dynamics of body mass loss and the role of protein reserves on a daily time
step, we pameterized an algorithm to estimate the daily proportion of fat and lean mass
used to supply energy demands depending on the body fat content (%) on that day. The
composition of mass loss in other species depends on thspigodic body composition,
andprotein is used as an energy source only when certain thresholds of fat depletion have
been reached (Dunn et al., 1982; McCue, 2010). Below this threshold, the proportion of

lean reserves used as energy sources increases linearly.

We parameterized therttshold under which lean mass is usedresnergy source and
calibrated the model using two empirical studies for hibernating brown bears (Farley and
Robbins, 1995; Hilderbrand et al., 2000). For parameterization, we ran the model using
threshold valuesdm 5%- 20% in increments of 1%. We chose the parameter value that
gave us the most similar result in comparison to the empirical data (Farley and Robbins,
1995 and Hilderbrand et al., 2000). In addition we also validated the model with
independent datadm a longterm study of fre@anging brown bears in Sweden

(Swenson et al., 1995; Zedrosser et al., 28023. We replicated the conditions

described in these studies and compared the model outcome with their results.

For the study of Farley and Rohbi(1995), we simulated the body mass loss for bears

with an initial mass of 80, 100, 150, 200, 250, 300 and 350 kg during 120 days of
hibernation. Because denning body fat content was not reported in their study, we
assumed a random value between 22998 Body fat. For lactating bears, we simulated
gestation and lactation for 2 cubs born 60 days before den emergence and a maternal fall

body mass of between 150 to 170 kg.

For the Hilderbrand et al. (2000) study (Fig. 2b), we simulated the hibernatiom-of
lactating and lactating bears with 2 cubs across 189, 208, and 227 days of hibernation.
For nonlactating bears, fall body mass varied randomly betweera2d878 kg and

body fat content varied randomly betweena?@40%. For lactating bears, falbty

mass varied randomly between 20@260 kg and body fat content varied randomly
between 22nd43%.
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We subsequently used data of fraeging Scandinavian brown bears (Swenson et al.,

1995; Zedrosser et al., 2Q@D13) collected between 198012 b validate that the

adjusted model could accurately predict the characteristics of mass loss and reproduction

for hibernatingbears Fi g. 2c). Al |l females were O 5 years.
on bears killed during the regular hunting season in August and September. Spring body

masses were from bears captured in late April and early(Mayemo et al., 2011 \We

simulated the Hernation of nodactating and lactating bears with 2 cubs during 181

days of hibernation (Friebe et al., 2001). Body mass was estimated randomly from a

normal distribution curve with an average of 130.9 + 29.1 kg. Because denning body fat

content wasinknown, we assumed a random value between 20% to 30% body fat.

2.5 Sensitivity analysis

We used a Sensitivity Index (Sx) to estimate the effects of parameters on model
predictiongBendoricchio and Jorgensen,2001) The | ndex rel ates changes

response with changes in the parameter using Equation 1:

Eqg 1 Yo

whereR\ is the response variable in the base condif®A,is the response variable

after changing the paramet®,is theparameter in the base condition d&hds the

parameter change with all other parameters kept consSanisitivity was assessed for

five model parameters (Table 2) with an increase and decrease in parameters of 5%, 25%

and 50%We usedthé aver aygenacdasi Il oss (kg) during |l actati
variable and ran the model for 120 days; &iiody mass of 160 kilograms, nursimgp

cubsover60 days and with denning fat content varying randomly betwe&022
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2.6 Model simulation experiments

We ran simulations for all three initial body fat contents, four lengths of hibernation and

five reproductive strategies. Because fl actat.i

variability (e.g., milk energy and protein content), we ran 100 repetitioresach
combination.To measure the reproductive energetic cost, we accounted for the energy
(kcal) and protein (kg) needed to support reproduction and converted these to fat and lean
mass, respectively.

We explored survival time for hibernating beatthvdifferent reproductive strategies

based on their denning body fat content. For this purpose we ran the model and recorded
fasting mortality when 30% of lean mass was depleted independently of the remaining
body fat reserves or when 95% of fat mass egdetedFasting studies in other

mammals have shown that animals die from protein depletion, which can range as high as
30 to 50% (Caolin 2004; Cherel et al., 1992; Le Maho et al., 1988).

3. RESULTS

3.1 Model parameterization and sensitivity

3.1.1 maBasi llyss compositiond parameterization,

Parameterization of fAdaily mass-lattalimgygs composi ti

bears suggested a body fat threshold of 17% beyond which all energy necessary for

maintenancend r eproduction was supplied by fat.

17%, the contribution of fat to energy needed decreased linearly to zero with the
difference provided by lean mag&imulaionsfor bears less than 250 kg (F&j2a)
resuled inmargind underestimatgof average daily mass lossmpared to measures
from Farley and Robbins (199 while slightly overestimahg body massndfat loss
andunderestimaing lean mass losshen compared to Hilderbrand et al. (2000) (Big.

2b). Model validation (Fig. 2-2c) with data from freeanging bears produced slight

Wh e
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underestimates of spring body mass for-tamtating and lactating female bears.
However, the range of values produced by the simulations was within the range of
observations. Thus, the genamsults of the calibration and validation suggested that the
model realistically estimated body mass loss by bears across different length of

hibernation.

Differences observed in body mass loss between simulations and empirical studies
(Farley and Rolbs 1995; Hilderbrand et al 2000) could be explained by several factors.
First, we had to assume certain ranges of values because some required information that
was not measured (i.e. denning body fat content, length of hibernation). Second, the
results ofFarley & Robbins (1989) showed a noifinear relationship between daily mass

loss and body mass which is not represented in the equation used to estimate the MtbHib.
Third, the model may overestimate energetic demands for fatter bears because it is based
on overall body mass and does not consider the ratio of fat to lean mass, which probably
has a higher metabolic rate than fat. Fourth, cost of lactation was calculated based on a
single study where female lean mass was approximately 100 kg (Farley andsRobbi

1995), and milk production in the model did not vary with maternal body size and

condition.

3.1.2 Model sensitivity

Sensitivity analysis showed that the model was sensitive to the milk energy content,

imi |l k production effiloissencympoandi ohmé Paaiamegt e
2). An increase of 10% in Amilk energy content
25%. An increase of 10% in fAdaily mass | oss <co

daily mass | oss 0 b yngh6efgestatdreperiodhaddlowimpacts and |
on model outputs. Changes of up to 50% in these parameters resulted in < 2% change in

average daily mass loss.
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3.2 Energetics of hibernating bears

3.2.1 Energetic reproductive costs of brown bears

Reproductive costimicreased as either more cubs were produced or length of lactation
increased, although the cost of a 14 day increase in length of lactation while denned was
less costly than an increase in litter size from 1 ¢al¥s(Table2-3). Total reproductive
costsacross the range of litter size and lactation length ranged from ~30,000 to 93,000
kcal and from ~2 to 6 kg of protein. This amount of energy could be met by the female
mobilizing ~3 to 10 kg of fat, and protein requirements can be met by ~9 to 28 legof le
mass. Lean mass necessary to supply protein demands for reproduction averaged ~73%
of the total body mass loss necessary to support reproduction grapl&estation costs

were minimal (betweenil4 % of the total reproductive cost) when compareiti¢ocost

of lactation.

3.2.2 Bioenergetic tradeffs

As expected, an increase in length of hibernation increased energy demands and therefore
total body mass loss for all reproductive classes @8&ja, b, c, d, e). The increase in

body mass loss fdears of different initial body fat content was not, however, consistent
with an increase in energy demands. Energy demands were higher for fatter bears,
although the percentage of body mass loss was lower. The rate of increase in energy
requirements tlmugh the hibernation period was constant, but the increase in the rate of
body mass loss varied with initial body fat content. Because leaner bears must use lean
mass earlier than fat bears, lean bears lost a greater proportion of body mass than fat

bears.

As expected, the threshold for mortality (i.e., 30% loss of lean mass) was reached faster
when denning body fat was lower (F&§4). The combination of long hibernation and

low fat reserves limited reproduction. Minimum levels of fat reserves neceassary

support reproduction varied from 19% to 33%. Reproduction was not possible if body fat

content was below 19% and length of hibernation was over 120 days. When initial body
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f at content was O 40 %, | ean mas sesbhegasis®e was cons
lean mass loss was solely used for meeting the protein needs of milk producti@n (Fig.
4).

3.2.3 Relationship between body condition and survival

There was a slight curvilinear increase in survival time as the initial body fat content

increased (Fig. 5). When denning body fat content was over 15%, each one unit increase

in the percent body fat content at the start of hibernation increased the survival time by 12

days. For the same length of hibernation, lactating bears needed ~3% mofat itioaly

nonl actating bears to sustain the O6cheapestd re
days and 1 cub). As the number of cubs increased from one to two or the length of

lactation increased from 60 to 74 days, an additional 2% body fat corgemequired to

meet those needs.

The additional survival timeY(in days) above that occurring for bears having a minimum
of 15% body fat can be predicted by the following equations, wherdenning body fat
content (%).

Eg.2 Nonlactating bear Y=11.4X7T 68

Egq.3 Lact.60days,1cub Y=10.X71 78

Eg4 Lact.74 days, 1 cub Y=10.77 98

Eg5 Lact.60 days, 2 cubs Y=10.7X7 115

Eg.6 Lact.74 days, 2 cubs Y =10.57 153
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4. DISCUSSION

Several empirical studies have measured loss of body mdsaetabolic rates of

hibernating bears (Atkinson 1996; Atkinson and Ramsay 1995, Farley and Robbins 1995;
Hildebrand et al. 2000; Robbins et al. 201Pbien et al., 201 \Vatts 1990). Recent
simulation studies have explored how physiological and envieatehconditions

influence energetic tradaffs, reproductive success, and survival in polar bessue
maritimus Molnar et al., 2009; Robbins et al., 2012a). Our study is the first to integrate
different sources of information on body mass loss, métatades, and reproduction

during hibernation in brown bears. We also evaluate energy and protein costs in separate
pathways for reproduction and the dynamics of lean and fat depletion for different
reproductive strategies as affected by length of hibemand female condition.

The cost to produce cubs during hibernation accounted for- B3% of the body mass

lost for lactating bears relative to ntactating bears. Fetal development accounted for a

small proportion of the total cost of reproduction . e. , O 1%), which is con
previous observations that bears produce very altricial offspring with the vast majority of

the growth in the den occurring after birth (Hissa, 1997; Oftedal, 1993; Ramsay and

Dunbrack, 1986).

Protein transferreddm the mother to the cub(s) for their growth accounted for more than
73% of the loss of body mass that occurred above the maternal maintenance cost, and
between 12% 45% of the total body mass lost during hibernation. Variation in body
mass loss was duie the number of cubs, the length of hibernation, and maternal body fat
content at the start of hibernation. The importance of lean mass to survival and
reproduction has also been observed in other species, such as rodents (Cherel, 1992;
Dunn et al., 1982)seals (Vierrier et al., 2011; Worthy and Lavigne, 1983), penguins
(Robin et al. 1988), and ungulates (Barbosa and Parker, 2008; Parker et al., 2009). In
caribou Rangifer tarandug survival and reproductive success during winter was best
explained by prtein and fat reserves rather than just fat (Parker et al., 2009). Despite

evidence for the importance of protein in caribou and bears, the role of protein in
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starvation and reproduction in wild mammals is still not well understood (Parker et al.,
2009).

Our assessment of the lactation costs included the range of lactation periGdi@E)
observed in denned, captive bears (Robbins et al. 2012b). We recognize that this length of
lactation probably underestimates the length of lactation for many vald beeither

more northern latitudes or in deeper snow conditions. For example, Friebe et al. (2013)
observed a probable birth date at the end of January and den emergence in late April, i.e.
a lactation period > 90 days in a bear population in scettttal Sweden. Thus, we

expect that our estimates of energy and protein requirements for reproduction are
minimums and could dramatically increase as larger cubs are nursed past 74 days.
However, a thorough assessment of the effects of longer lactatiodgeridody mass

loss requires additional studies and data.

Adult brown bears accumulate lean mass reserves mostly during the spring and early
summer (Hilderbrand et al. 1999; McLellan 2011), and rich protein diets during spring
enhance body mass gain ($wsen et al. 2007). However, nutritional studies of bears

have most often focused on the importance of body fat accumulation during the late
summer and fall (Atkinson and Ramsay 1995; Derocher and Stirling 1998; McLellan
2011; Schwartz et al., 2006). Basmdthe evidence of other species in combination with
our results, reproductive success among brown bear populations may also be explained
by available protein early in the spring which is used to replenish that lost during early
lactation during denning drto provide the doubling of milk protein content once the
mother exits the den (Farley and Robbins, 1995). We therefore recommend more
attention be placed on understanding the role of protein in bear reproductive success, as
well as relating the proteiroatent of bear diets with the spatial variability in

reproductive success.

Our results illustrated that minimum fat reserves necessary for maintenance and
reproduction differ among environments. Nagtating bears needed ~ 19% of body fat
to survive 19 days of hibernation, ~ 22% to survive 180 days, and ~ 24% to survive 210

days. Reproductively active females need to increase their denning body fat content by ~
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5.7% units above these levels to successfully give birth to 2 cubs 60 days before den

emergace. Consequently, such females would need a minimum of 25% to 30% body fat

at the start of hibernation to successfully reproduce, depending on the length of the fast.

This result is consistent with prior bear studies. For example, no polar bear wittiehn in

body fat content < 20% was observed with cubs the following spring (Atkinson and

Ramsay, 1995), only 14% of American black bears were observed with spring cubs when

their body fat content averaged 19% prior to denning (Belant et al. 2006), and brown

bears with O 20% body fat at denning did not

The difference of ~5.7% of fat necessary to support reproduction during the shorter
lactations simulated in this study may be difficult to detect in field studies bet#@ise
likely within the error of bioelectrical impedance analysis (BIA, Farley and Robbins
1994), which is commonly used to determine body fat content in wild bears. However,
BIA measurements may be useful to understand the links between body fat coedtent a
reproductive success in wild bears with longer lactation periods in the den that would

increase the required maternal body fat content.

Our results suggest that an increase in litter size of one cub was more costly than a two
week increase in the lergof lactation. Therefore, intgropulation differences in litter

size may be adaptive and reflect letegm differences in food resources, whereas

variation in the timing of birth might be the primary mechanism used to adapt to inter
annual food variabity within a population. For example, the number of cubs produced

by American black bears did not vary with female body mass (e.g., as a surrogate of body
condition, Noyce et al., 2002), and the same captive brown bears always produced either
twins or tripkts irrespective of their body fat content, assuming body fat content was

above the minimum threshold for reproduction (Robbins, pers. observation.).

In our model we assumed that the energetic cost to produce twins was the same as that for
triplets. We lased this assumption on the negligible cost of fetal development (Hissa,

1997; Oftedal, 1993) and the reduced growth rate of triplets relative to twins while

nursing in the den in brown bears (Robbins et al. 2012) and polar bears (Derocher and

Stirling 198). The reduced size of triplets relative to twins may reduce cub survival once
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out of the den and be independent of the mot he
Stirling 1996). Thus, the production of larger cubs at den emergence (i.e., twins rather

thantriplets) may be the preferred strategy in environments where food resources are

either marginal or highly variable, whereas the production of more cubs (i.e., triplets

rather than twins) may be the preferred strategy in environments with abundant, high

guality, relatively stable food resources (Ferguson and McLoughlin 2000; McGinley et al.

1987. Other factors, such as body size, age, and human persecution history, may also

influence reproductive strategies and thereby explain some of the differencegdbser

between bear populations (Derocher and Stirling 1998; Zedrosser et al. 2009; Zedrosser

et al. 2011).

4.1 Conclusions

Evaluating reproductive tradefs based on energetic requirements is essential to
understanding how species adapt to differenireninental conditions. Although these
processes are difficult to study in a controlled setting for a large mammal, model

simul ation provides a tool for developing 06exp
improve our knowledge and understanding (Ov8enith, 2007). We built a model that
simulated the body mass loss for hibernating brown bears to assess reproductive cost and
explore limits on energetic traddfs in reproduction. Our model provided significant

insight into nutritional factors controllinggproduction in bears that might be applicable

to other ursids. The similarities between predictions of our model with field observations
suggest that we can exploit the synergism between these two approaches to understand
nutritional factors that contrdiear reproduction. This will become particularly important

as global warming reduces sea ice and, therefore, seal availability for polar bears and
potentially alters terrestrial food resources for many other species of bears (Robbins et al.
2012b).
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Figure 2-1. Model diagram and schedule. Equations and parameters are in Table 1. The
model starts with the inputd the initial conditions on day 1 of denning and ends at den
emergence. Each day the model accounts for daily energy and protein demands based on
body mass and reproductive cost. Reproductive cost varies with litter size (one or two
cubs) and length of taation (60 or 74 days). The amount of lean and fat mass loss each
day is estimated using the composition of the daily mass loss algorithm. Daily mass loss
algorithm i
and proteircosts in separate pathways.
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Figure 2-2. Calibration and validation model resultsvo independent, North American
brown bear studies (Farley and Robbins 1990, Hilderbrand et al. 2000) were used to
adjust the parameters and evaluate model performaacenddel validation we used
information from the Scandinavian Brown Bear Research Project. In all simulations, one
hundred repetitions were run for each scenario. White boxplots are féaatating

bears, and grey boxplots are for lactating bédrs.bo represents first and third

guartiles with the inside line being the median. Whiskers off boxes represent (vertical
dash lines) the range of observatiofgy. 2-2a Comparison of the daily body mass loss
among the results from this study and data puétish Farley and Robbins (1995).
Estimates ofarley and Robbins (1995) were based on the regression line in their Fig. 5
for nortlactating bears, and are here presented in2FR2g) with blacksquaresand a

dashed line. Fig2-2b) compares spring body ss(total body mass, fat mass, and lean
mass) between results from this study and Hilderbrand et al. (1999). Results by
Hilderbrand et al. (1999) are presented with black diamonds, with 95% confidence
interval obtained from their Table 1. F&t2c) compaes spring body mass between

model results from this study and freeging female brown bears in Sweden.
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Figure 2-3. Effect of female body condition (% of denning body fat content) on total
body mass loss (kg) and energy cost (kcal) and with incrgdmsbernation length. The

right column of figures is the percentage of body mass loss during hibernation relative to
the initial fall body mass. The left column is the energy costs of hibernation estimated
from the loss of lean and fat. (a) is Non lactgti(b) is Lactating 60 days 1 cub, (c)
Lactating 74 days 1 cub, (d) Lactating 60 days 2 cubs. (e) Lactating 74 days 2 cubs.
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Figure 2-4. Percent of lean mass loss for different reproductive strategies and initial fall
body fat contents (%). Fall leamass was assumed to be 100 kg for all bears. 20%, 30%,

40% of denning body fat content. Grey dash line represents the survival threshold of 30%
lean mass loss.
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Figure 2-5. Estimated survival time for bears having different denning body fat dsnten

and experiencing different reproductive strategies. The lines represent the number of days
before 30% of lean mass loss is reached (survival threshold). Initial body lean mass was
100 kg. Bars are three times SD. Horizontal grey lines represent auliffength of

hibernation (120, 150, 180 and 210 days).
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CHAPTER 3

ASSESSING THE NUTRITIONAL QUALITY OF BROWN
BEAR DIETS AMONG INT50ERIOR ECOSYSTEMS
IN NORTH AMERICA

1. INTRODUCTION

Among wide ranging species, conspecific animalsipging different habitats often
differ in body sizeyeproductive traits and density between populati&esguson and
McLoughlin, 2000;Herfindal et al., 2006Zedrosser et al. 2011). Differencedifa

history traits between populations are frequently associated with food availability
(Hilderbrand et al., 199915:erguson and McLoughlin, 2000Jariations in dets
influencethe supply of energy and protein necessary for maintenance, growth and
repraduction Barbosa et al., 200900d habits and nutritional studies are among the
first steps taken to understand wildiiabitat relationships. Generally, these studies
describe the seasonal diet composition of a species within a population, andabfide in
information regarding the energy and protein content of foods. Such studies often lack an
explicit nutritional evaluation for the complete diet, including a measure of the key
nutritional elements influencing fitness.i¥lbsence of an explicit nitional evaluation
limits our capacity to compare between ecosystems and comprehend nutritional

mechanisms affecting individual fithess (Homyack, 2010; Bojarska and Selva, 2011).

Brown bearsrsus arcto} are widely distributed and can be found in a variety of
habitats KcLellan et al., 2008Bojarska and Selva, 2011). Nutritional differences in
those habitats often lead to variatiarbody and litter size, intditter interval, and
population densities (Hilderbrand et al., 1B98edrosser et al., 201Brown bears are
flexible omnivores (Robbins et al., 2004), and depending on food availability, bear diets

can range from largely carnivorous to largely herlmwar(Hilderbrand et al., 1999b;
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Bojarska and Selva, 2011). There have been several efforts to understand how food
resources influence life history traits in bears. These studies have integrated information
on food habits in different ecosystems to illustrd) the influence of dietary meat intake

on body size and population density (Hilderbrand et al., 1999b; Ferguson and
McLoughlin, 2000; McLellan, 2011); 2) the importance of primary productivity and
seasonality on bear reproductive traits, such asfagenaiparity and intetbirth interval
(Ferguson and McLoughlin, 2000); and 3) the significance of digestible energy and other
nutrients on the dietary patterns of brown bears (Bojarska and Selva, 2011). However,
guantitative methods to evaluate and coragmtween the nutritional quality of
ecosystenspecific bear diets have not been explored.

In general, interior brown bear populations in North America are composed of smaller,
more herbivorous bears than coastal populations with access to $@nwrhychus
sp.;Hilderbrand et al., 1999b). Population densities and reproductive success also vary
between inland and coastal populations with inland (interior) densities and reproductive
success being lower (Mowat et al., 20BBrguson antcLoughlin, 2000;Zedrosser et
al.,,2013. Al bertabs bear populations occur along t he
Rocky Mountains and adjacent Foothills to the east. Alberta brown bear subpopulations
differ in individual densities (5 to 18 bears/1006Gkand body conditin(ASRD & ACA,

2010 with spring body mass for females averaging 108 kg (SE=8; Zedrosser et al., in
revision). Brown bears have been designated as a provincially threatened species in
Alberta, in part due to their low reproductive rate which limits threiovery ASRD and

ACA, 2010. In contrast, th&lathead ecosystem (west slopes of the Canadian Rockies) is
located in the southeast part of British Columbia adjacent to-sagtern Alberta and
sustains a productive brown bear population. Bear densiges are among the highest
recorded for interior populations with densities ranging from 25 to 55/théagknt, but
spring body mass for females are similar to Alberta et B¥kg (McLellan 1989, 2011).

Further south along the Rocky Mountains, @reater Yellowstone Ecosystem (GYE)
supports a productive populatiarith spring and summdemalebody massesf 112 kg

(SE=5; Schwartz et al., 2013). The GYE population has increased from 135 individuals in
1983 (Schwartz et al., 2006a) to 593 individual2010 (Cain2012). Despite this

recovery during the past three decades, the current GYE bear population now faces some
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nutritional challenges. Cutthroat tro@rfcorhynchus clarkipopulations in Yellowstone
Lake, which once made up an important padiefs of bears (Mattson et al., 1991), have
markedly declinedliue to the introduction of nemative trout Salvelinus namaycuslnd
Awhi r | i n Nyxabiuscerebglgs(&oel(et al., 2005;20Q6ortin et al., 2013;
Tiersberg et alin revision). Whitebark pine Rinus albicauli$ nuts, a key food that
affects reproductive succe@dattson et al., 1992; Schwartz et al., 2006b), has also
declined due to whitebark pine blister ruStgnoartium ribicolg and mountain pine
beetle Dendroctonus ponderosg@reater Yellowstone Whitebark Pine Monitoring
Working Group 2006; Haroldson and Podruzny 2010; Fortin et al., 2013). While the
proportion of meat in the diets of brown beiarshe GYE has remained either constant
(female bears) or declined (male bearsr{ii et al., 2013), a reduction in the elk
population that began in approximat&§95 (Eberhardt et al., 2007; Bartddeyer et al.,
2008; Middleton et al. 2013; Ripple et al., 2013) may ultimately reduce the dietary
proportion of meat and thereby decre#ise nutritional quality of bear diets with

subsequent effects on population productivity.

Reproductive success of bears depends on both maternal fat (Farley and Robbins, 1995;
Robbins et al., 2012a) and lean mass reservigse@Alfaro et al., 2013) bere denning.
For brown bears, lean mass growth occurs primarily during spring and early summer,
while fat mass accumulation occurs mostly during summer and early fall before
hibernation (Hilderbrand et al., 1999a; Felicetti et al., 2003; McLellan, 2@hiys3tz et
al., 2013). Irmy study ecosystenspecific brown bear food habits and nutritional
information are integrated into a dynamic model to estimate the amount of digestible
energy and protein in one kilogram of fresh bear diet. We used this maea two
guestions: 1) what are the differences in nutritional quality (i.e., amount of digestible
protein and energyof bear diets in westentral Alberta, the Flathead, and both the
historical (1977- 1987) and recent (20072009)GYE; and 2)whatfood resourcesre

most criticalfor providing energy and protein to bears in each ecosystem.

We hypothesized thaebause fat and lean mass accumulation are positively régated
reproductive success bearsdigestble protein in spring and early summerdan
digestible energy in late summer and &dbuld behigher inthe Flathead and GYE than

in westcentral Alberta. Based on differences in individual body, sizeexpect protein
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to belower in the Flathead than in the GYE. Due tordneentdecreasén trout andpine
nuts in thediets of GYE bears differences irthe nutritional quality should be apparent

between historial and recent diets.

2.METHODS

2.1 Brown bear food habits

Fourpublishedorownbearfood habits studies were used to quantify gstesn specific
nutritional quality (Mattson et al., 1991; McLellan and Hovey, 1995; Munro et al., 2006;
Fortin et al., 2013).

2.1.1. Westentral Albertabrown bearfood habits

In westcentral Alberta, aticeable differences in diatere exhibited beteen bears living
in theMountain versus @othills andwere thereforseparatd as in Munro et al. (2006)
Bear food habits presented in Munro et al. (200@yebasedn 665 scats af8 brown
bears collected between April and October 2@0D3. Theadiet of Foothills beasin
Munro et al. (2006)vas examined frortate April toearly October in bimonthly periods,
while thediet of mountainbearswas examinedrom late April tolate September, hence

we extended to early October.

2.1.2 Flathead food halsit

Information onfood habits for the Flathead regiohsoutheastern British Columbia,
Canadawas obtained from McLellan and HovEy995. This study was based on 1100
scatscollectedbetween April and November 1978.991from 77 radiecollared brown

bears. Diet descriptions extended from early April to early November, which we divided
into bi-monthly periods, but we only use the period between late April and early October

to compare with the other bear diets. McLellan and HOVEW95 study wasondicted
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before correction factors for different food item digestibility weegelopedHewitt and
Robbins; 1996). Thusye correct dry matter intake using the corresponding correction
factors (CF)rom Hewitt and Robbins (1996) agplied in Fortin et al.2013): ungulates
CF=3, insectCF=1.1, horsetailEquisetunspp.) CF=0.16, graminoids CF= 0.24, forbs
CF=0.26, roots CF=1, and fruits CF=1.2 (Hewitt and Rohldi886).

2.1.3 Greater Yellowstone Ecosystem food habits

Two diet studies were used to chaegize the historical (19771987) and recent diets of
brown bears in GYE. The first study by Mattson et al. (1991) included Yellowstone
National Park and surrounding National Forest and was based on 3,423 scats from 96
radio-collared bears. @t descripions extended from April to Octobdry month, which

we divided into bimonthly period$or dynamic modellingAs in the Flathead study, dry
matter intakevas correctedsingthe aboveorrection factorplus ones forodents

(CF=49), insects and falseuffles (CF= 1.), and seedfCF=1.5 (Hewitt and Robbins
1996).

The recent GYE food habit study (Fortin et al., 2013) included thaerareediately
surrounding Yellowstone LakeThe diets estimated for Yellowstone bears was divided
into male and femalJ@ach containing both adults and subadults. Scatscu#tested
between 2007 and 2009 (n=77B)et descriptios extendrom May to Septembefor
males and to October for females amanonthly period¢Fortin et al., 2013; Fortin,
unpublishedl Thereforewe extended the periods to cover from late April to early
October.

When comparing he fAr ecent 0 and Ahiisnustbei cal 06 di ets of
rememberedhat Fortin et al., (2013tudy occurred in the immediate area surrounding
Yellowstone Lake wheredbe Mattson et al., (19919tudy occurred across the much

larger Greater Yellowstone Ecosystem.
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2.2Food items and nutritional values

Bear foodddentified in the Alberta, Flathead, and GYE studiese grouped inteight
categoriesgreen vegetatiarberries roots ants terrestrial meat, nuts, cutthroat troamd
falsetruffles (mushroomy (Table3-1). Nutritional information for each category was
estimated using published data (see Table Al supplementary material). Nutritional
information includd six componentgdry matter (% DM); dry matter digestibility (%
DMDig); grossenergy (kcalkg, Grossk; energy digestibility (% EDig); crude potein
content (% PQ); and potein digestibility(%, PDig) All components, except DM, are
expressed on ayimatter basisSome nutritional valueghe number of samplegas
small andorecluded amstimateof variation In those casese assumed a standard
deviation equal to 10% or 20 % of theeragenutritional value.

The green vegetation categangluded sevenspecies ofjrassesforbs, and horsetails
(Equsetunspp). Nutritional values for green vegetation were estimated for three
phenological stagespsng - early summei(from 15 April to 31 May); summer and late
summer (from 1 June to 31 July); andlyéall (1 August to 15 OctoberY.o match with
the plant phenology in thdountainecosystems illberta, spring early summer sige

was extended until June 15

The root category included thirteen species (Tai8e Bppendix3-A). For the Alberta
ecoystem, we used nutritional estimates for one root species: alpine sweetvetch
(Hedysaraum alpinujnCoogan, 2012). For the Flathead and GYE we used all root
species to estimate the average and SD of nutritional parantiérhgrd and Robbins
1990 Mattson et al.,1997;2004 Hammer and Herrerd 987 Coogan et al., 2012;
Fortin, unpublished) To estimate the DM content, we used values of hutietiroots
obtained from USDA National Nutrient Datababkéf{://ndb.nal.usda.govbecause other

estimates weranavailable.

The nutscategoryincluded white bark pinand other conifeseeds Rinus eduli¥. In the
Alberta and Flathead ecosystem, we used the average and SD nutritional information of
all nuts. In the GYEwe usechutritional information only fowhitebark pinenuts Eortin,

unpublishedl Nutritional information for the berry category was obtained from six
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common species in Alberta, Flathead and GMEIch et al., 1997; Pritchard and
Robbins 1990; Coogan et al., 20E2yrtin, unpublished For ats, nutritionalinformation
included values for workers and pupyce et al., 1997; Swenson et al., 199@ftson
et al., 2001;Coogan et al., 2032

In the terrestrial meat categorye includedungulates and rodengislattson et al.199%,
McLellan etal., 1995 Fortin et al, 2013, but the nutritional information includeeer
(Odocoileusspp.), elk Cervus elaphyshison Bison bisoh and mooseAlces alcep
(Pritchard and Robbins, 1990; Mattson et al., 2004; Fortin, unpublished).

Nutritional information forfalsetruffles (mushroomsgorrespondso Rhizopogorspp
(Mattson et al., 2002; Fortin, unpublishégipendix 3A, Table 3A1). Miscellaneous
food categories reported in Munro et £006), and garbage and debris, reported in
Mattson et aJ.(1991), were not considered in our analysis.

2.3 Model structure

Stella 10.2 (isee Systems Inc. 2012) was uséditd a modethatestimate the

digestible energy and proteimone kilogranof fresh bear diet using tlieod habits and
nutritionalinformationdescribedabove (Table-1). The model estimated results in a

daily time step, where day one corresponds to Afriand the final day corresponds to
Octoberl5, for a total of 180 days. The model input was digestible dry matter intake per
food item obtained from food habits information. Because this data comewaekly

periods, the model interpolates between these values to obtain the digestible dry matter
per food item per day. Nutritional values per food item were randomly estimatachin e
repetition using a normal distribution curve built with the average and SD values in Table
1. One hundred repetitions were run per simulated scenario. Model outputs included daily
digestible energy and protein (fresh diet base). Digestible energyatedthp

contributions per food group were also estimatddeatify key food resources.eRults

were reportednafi k i | o greshdri @tdd her t h almselfedausgit mat t er 0O

simplifies future estimations of foods requirements (kg) and potentiglfdaidl intake.
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2.3.1 Model calculations

The model runs in two consecutives calculations. First, the model estimates thégyrams
of each food item (fi) in one kilogram of fresh diet (gr.FFdiet(fi) transform the
digestible dry matter per food item (grd@istableDM(fi))to grams of fresh food

(gr.FF(fi)), the gr.DigestableDM(fis divided by their corresponding dry matter
digestibility (%.DMDig(fi)) and dry matter content (%.DM(fi)).

8
b8 Y

Eql C& &1 1AL

The grams of each food item in the fresh diet base is obtained by dividing the
gr.FFoodfi) by the sum of all food items and multiplying by 1000 (g).

Eq.2 C& & A Bk Q—"———*1000

In the secod phase, the model usthe grFFdiet (fi) and the nutritimal values (Tabl8-

1) to estimate the contribution of digestible energy and protein per food item and later
adds these contributions to obtain the total digestible energy and prodeia kilogam

of freshdiet.

Digestible energy per food item (kcal.DigestibleE(fi)) is the product &Fdret(fi), dry
matter content%.DM(fi)), gross energy (kcal.GrossE(fi)) and energy digestibility per
food item (%.EDig(fi)). DM, Grossk and EDig are obtdrirom data in Tabla-1.

Eq.3 & Adh E CA O GEEAG @b &A EEE & & - AE E Ag\ DT OFE%b 96$ EAE

Digestible energy for the total diet (kcal.Digestiblgket)) is the sum of the digestible

energy per food items.

Eq.4 kcal$ ECAOGEARIGR E ABRE CAOGEEAT A%
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Digestible protein per food item is the product of th&giet(fi), dry matter content
(%.DM(fi)), protein content (%.PC(fi)), and protein digestibility (%.PDig(fi)) per food
item. PC, PDig were obtained from datalable 1. Digestible protein for the total diet
(gr.DigestibleRdiet)) is the sum of the digestible protein per food items.

EqQ5gr$ ECAOGHEAC B G AEE®D S - £AE P& #A£E b0 $ BEE

Eq.6 gr. DigestibleRdiet)y = B C@S ECAOGHEAT A0

To obtain the digestible energy and protein per food item we used equations 3 and 4,

using 1000 g of fresh food with 100 repetitions run.

3. RESULTS

3.1 Digestible energy and protein per food item (fresh food base)

Digestible energy and prote{gr/kg fresh food) was noticeably different between food
items Fig. 3-1). Plant matter had lower levels of digestible energy and protein than
animal matter, seeds afalsetruffles. Seeds have the highest level of digestible energy
because of their vgrlow water content, followed bfalsetruffles, terrestrial meat and
trout (Fig. 31a). Digestible energy in one kilogram of green vegetation, berries or roots
are ~1/7 thain nuts and ~1/5 than in terrestrial mefig( 3-1a). Digestible protein was
higher in trout, ungulatesfalsetruffles and ants.Digestible potein contribution of

terrestrial meat is ~3 to 5 times higher than green vegetation and roots1Big. 3

3.2 Digestible energy in bear diets

Estimated digestible energy varied throulgé $eason in all ecosystems (Biga). Bear

diets in the GYE had the highest levels of digestible energy. The recent GYE and
Flathead diets displayed two distinct peaks: one in spring (until thef2ay), and
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other in late summer (from the1Bugus). Thehistorical GYE diet had the highest

digestible energy content during spring and summer which subsequently decreased in late
summer; however, it maintains one of the highest levels of digestible energy throughout
the three seasons. Bear diets in wesilberta had the lowest levels of digestible energy

in all three seasons. These diets showed one peak of digestible energy during early
summer (1% of May to 30" June).During late summer and early autumegent diets in
Yellowstoneprovide~2 timesmore digested energy than in the Flathead and ~3 to 4

times more digestible energy than the fhdist and Mountainsn western Alberta

3.2 Digestible protein in bear diets

Digestible protein varied through the seasons for all ecosystem&{#y. Digesible
proteinwas higtestin the spring and early summierall ecosystemsut the GYE and
Flathead showedsecond p& in the fall The Flathead diet had protein levels higher
than the recent male diet in GYE during early spring, but in summer proteln le
decreased to less than ~50% of the recent male diet in GYE. Diets in Alberta have the
lowest levels of digestible protein through the entire season. Digegtilbéérpn Alberta
Mountaindiet was ~1/8hanin the recent GYE female diet during spramgd early

summer The Flatheachaddigestible proteitevels~2-3 times higher thathose inthe

Foothillsand Mountain®f Alberta during spring

3.4 Key food items

3.4.1Energy contribution per food item

In the AlbertaFoothills, ungulates, roots andagn vegetatiowerethe main energy
sourcesn spring, while h summey green vegetatiocontributed ove60% of digestible
energyavailable in bear diefg-igure 33a) In late summerherries supjed 25% to 40%
of thedigestibleenergyin the Foothillsof Alberta; while in early falrootssupplied over
75% of the digestible energy theAlberta Mountaindiet, roots provided over 70% of

thedigestibleenergyduring spring and early summerhile green vegetation and berries
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were the main sourcekliringsummer and early fa{Fig. 3-3b). In the Flathead,
ungulates provided 50% to 70% of the digestible energy during spring, while in early
summer green vegetation contributed ~50%. In late summer and early fall, berries
contributed over 90% of the digestlnergy in the Flathead diets. In early fall,
terrestrial meat contributed ~40%difjestibleenergy in Flathead die(fig. 3-3c).

In the recent GYE female diets, terrestrial meat, i.e., primarily ungulates, contributed
~80% of the digestible energyidng the spring and early summer (FigBf3. The
contribution of terrestrial meat decreased to 20 to 30% during the rest of the year. In
summer, green vegetation contributed ~25% of the digested energy in thefeatapt

diet, while in late summer arerly fall, whitebarkpine nutscontribued ~30%and false
truffles ~15%. During early fall, roots contributed ~ 20% to redemtale digestible
energy.Forrecentmale dies in the GYEterrestrial meat wathe main source of
digestibleenergythroughoutall seasos, contributing ~50% (Fig.-3e). Green

vegetation contributed ~40% for the energy in spring and summer. In late summer and
early fall, whitebark pine nuts contributed ~30% of the digestible energy. In the historical
diet, trout provided over®4 of the digestible energy during early summer to fall. During
late summer and before denning, whitebark nuts contributed over 50% and terrestrial
meat ~20% of the digestible energy for GYE béhig. 3-3f).

3.4.2 Protein contribution per food item

In the Foothills, green vegetation, roots and ungulstese the mairsource otdigestible
proteinin spring, while during the rest of the seagogen vegetatioprovidedover 60%

of thedietary protein(Fig. 3-4a). Terrestrial meat providee25% of the proteirthrough

all seasos in the foothills, whilen late summer and early fall roots contrexl#40%. In

the Mountais of Alberta rootscontributed 90% of thedigestibleprotein in the spring
butdeclined to~20% by early summerln the Mountains, igeen veggtion provided

more tharb0% of the digestible protein in summer andre tharf0% in early fall(Fig.

3-4b). In the Flathead, terrestrial meat provided most of the digestible protein (~70%) in

spring and fall. In summer (June to July",5green vegetain was the main source of
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protein in the Flathead bear diet (>50%) but declined during fall. Ants contributed ~20%
of the digestible protein in Flathead bear diets during the sulftigei3-4c).

For recent diets in the GYE, terrestrial meat was the swirce of digestible ptein,

ranging between 40 and®hrough theseasos (Fig. 3-4d, €. Whitebark pinenuts
contributedl % to 20%of the digestible protein during summer and early fall. Green
vegetation contributed ~30% of the digestible proteinrgdutihe summer in the recent
female diet in Yellowstone and ~30% of the reemiale diet during spring and summer.

In the historical GYE diet, terrestrial meat was the main source of digestible protein
(~95%) in spring after which cutthroat trout contrilslité’5% to digestible protein

through the late summer. In late summer and early fall, whitebark pine nuts contributed
~30% to the digestible prote(fig. 3-4f).

4. DISCUSSION

Bear diets differ in their pattermd digestible protein and energgrossecosystemsnd
seasons. These patterns can be associatedifféfencesn population densjtandbody
size The nutritional quality of bear diets were higher in the GYE, followed by Flathead
and Alberta ecosystemscésysterain Albertg particularly themountainshad the

lowest levels ofligestibleenergy and proteirhtough all seasa) and his result is
consistent witlthelow reproductive rates observetBanff National Park (Garshelis et
al., 2005)and low individual densities in the Mountain afabthill ecosystemsASRD
andACA, 2010. There are other nutritional aspects of Alberta ecosystems that might
also contribute towards low densities. For example, these ecosystems have a shorter
growing season and, therefore, the amount of time duringetirethat bears have for
foraging (Munro et al., 2006). Alsbabitat disturbance® . logging energy
developmentandroad building may increase the production of berries, green vegetation
and roots in new open areas, but increase humaanconflics and therefore increase
bear mortalitiegNielsen et al.2004ab; Nielsen et al. 2006; Nielsen et al. 2p08
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Diets in theFlatheadecosystentad protein leves similar tothe recenfaverageietin the
GYE during spring, bugnergy leved were not asigh as in the GYE diets during late
summer and fall. A rich protein diet in spring may improve lean mass accumulation and
milk production for lactating females, which would likely enhance reproductive success
(Farley and Robbins, 1995; Hilderbrand ef B999;L6pezAlfaro et al., 2013).

McLellan (2011) observed thatackbeargUrsus americanysin the Flathead can gain
weight during the springd similar pattern was observed in northern brown bear
populations in Sweden, which either maintained or gamasks in spring when compared
with southern populations (Swenson et al., 2007). The authors suggest that the increase in
body mass during spring may be due to more abundant sources of protein in northern
ecosystems (Swenson et al., 200f¢atrich diets have alsobeencorrelatedwith bear

body sizeand population densit§Hilderbrand et a).199%), but when populatia

without access to salmon are excluded; meat diets have a negative skiptiotin

population density (McLellgr2011).Bears in thd-lathead have one of the smallest body
sizesamong North America brown bear populations but one of the highest population
densities among interior bear populatioBedrosser et gl2011). McLellan (2011)
suggested that female browedrs in the Flatheadight haveadapted t@ lessnutritious

plant dietthat included abundant, low protein berries in the fall by bginaller The

smaller size would reduce their energy needs while the abundant, fall berries would

provide energy for fatteninigeforehibernatia.

Whil e we agree wi t hvehidklighttHe impaortédneef meatpndhie h e s i s ,
nutritional quality of bear diets in this ecosyst@rarrestrial meat waan important

source of digestible protein and enengyhis ecosystem iall seasog which mayhelp

explain the high population densipservedn the Flatheaccosystem.

Major differences in nutritional qualitgf bear diets across ecosystenese largely due

to the presence or absence of a few highly nutritious food items, such asia¢mesat

(mainly ungulates), pine nuts or trout. For example, the digestible protein in one kilogram
of ungulates is ten times higher than in one kilogram of roots, and the digestible energy in
one kilogram of nuts is seven times higher than in onerktogf green vegetation. As a
conseqguence, small changes in consumption of nutritious foods have large impacts on the

nutritional quality of bear diets. However, individual capacity to switch between food
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items is constrained by factors that were not measin this study, such as food

abundance and distribution and bear physiology (e.g. digestion rate, stomach capacity). In
Alberta ecosystems, roots and green vegetation are the main source of protein and energy
at the beginning and end of the activeigmbrrespectively; however their low nutritional

value constrainthe total energy and protein intake and therefore reduce reproductive
successkor example, in the Flathead and recent diets in the GYE, most of the protein
comes from terrestrial meat, ane timajority of energy is obtained from ungulates,

berries and nuts. Bears in Alberta ecosystems, need to consume 10 kg of roots to obtain
the same amount of protein as one kilogramrafulatesAlso bears in Alberta need to
consume ~4.3, or 6.7 kg of ropte obtain the same amount of energy as from one

kilogram of ungulate, or nuts respectively.

There aréwo otherenvironmentafactors that might also influena@edividual nutrition
and thudlifferences in population productivitiirst, here are diffeznces in the length
of the growing seascamong ecosystembor examplein the Flathead ecosystem bear
food wasavailablefor seven monthsbeginning of April to the end of OctohdéWicLellan
and Hovey, 1995hile in the Alberta ecosysteand GYE foodvasreportedfor six
months (Munro et al., 2006; Fortin et al., 2013). Also severe winter conditions in the
Mountain ecosystenmmight dday food availability in springvhile early winter
conditions may reduce food availability in the falbnger growing seasis benefit bear
nutrition by increasing théime they cangather energy and protein eeges andby
reducingthelength ofhibernation and thus threquirement®f lean and fat magseserves
necessarto support thelenningphasgLopezAlfaro et al., 2A3). Second,
environmental conditionmfluencefood abundanci the ecosystem§&ood dundance
will limit nutrient intake depending thienctional responsand the nutritional quality of
the food (Barboza et al., 200%unctional response defines theeraf intake and
nutritional quality influences the amount of food necessary to support energy and protein

requirements.

Recent diets in the GYE hatlee highest levels of energy and protéire tothe largely
carnivoroudiet acrossll threeseasos. Hgh protein levels isonsistent with the
larger individual body size, when compdwith otherinterior North Americarbrown

beas, and with thé& rapid rate of population recovery during the last three decades
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(Schwartz et al., 2006&ain, 2012. Comprisons between historical (Mattson et al.,

1991) and recent (Fortin et al., 2013) diets do reveal, howevhgrgdn the nutritional
guality due to the loss of key foods which may affect fithess and population density in the
future. The absence of troand lower consumption of nuts has reduced the total

digestible energy during spring and summer. Trout was the main source of energy from
May to mid August in the historical diet, while the contribution of nuts was important

from mid-August to SeptembeRigestible energy in the recent GYE diets was dominated
by terrestrial meat and green vegetation during summer, but bears need to eat ~4 kg of
green vegetation to supply the same amount of digestible energy as one kilogram of trout.
During late summer anekrly fall, nut consumption was lower with bears needing to eat

~7 kg of berries, or-2 kg of terrestrial meat, of7 kg of roots, or5 kg of green

vegetation to supply the same amount of digestible energy as one kilogram of nuts.
Protein levels also degased due to the shiftfood items. Recent average diitmale

and males) were ~50% lower in digestible protein during esuijnmer than the historic

diet. Bears need to eat ~5 kilograms of green vegetation to supply the same amount of
digestible protim as one kilogram of terreg&al meat or nutsThus, while bears will

readily switch to the next most nutritious food as more nutritious foods disappear (e.g.,
ungulates or pine nuts), the loss of high quality foods may have a disproportionate effect
on kear productivity when increased intad@nnotfully replace the reduction in dietary

quality.

4.1 Conclusion

Important differences in the nutritional qualitygsfzzly beardietswere observed among
several interior ecosystems. Patterns observed suthge individual body size and
reproductive fitness are influenced by the seasonal availability of protein and energy.
Small changes in the availability of highly nutritious foods can have disproportionate
effects orthe nutritional quality of bear dist Thesehanges in nutritional qualityill

have an even greater impact wtiead availability and foraging efficien@ue not

permit increaseonsumptiorto balance the reduction in nutritional quality.
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Previous studies have illustrated the differendgown bear diets and their correlation
with life history traits Hilderbrand et al., 1999t-erguson and McLoughlin, 2000
Bojarska and Selva, 2011; McLellan, 2011). However, these differences have not been
previously quantified or assessed for therer#ctive period. This study is one of first

to comparativelyevaluate thecosystenspecific brown beadietsfor interior

populations of grizzly bears and develop this assessment for the entire active Baigson
approacltanalsobe used to evaltathe impact of environmental changesl
managemendecisions on bear nutrition and ultimately population productivity.
Additional studies on the limitations to intake will be important in understanding the

impact of changes in dietary quality.
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Figure 3-1: (a) Digestible energy (kcal/lkg fresh food) and dijestibleprotein (g/kg
fresh food) per brown bear food item category. Error bars are SE (n=100 repet
Digestible energy and protein were estimated basetie@@verage nutritional values
each food category (Table Al, supplementary material). Nutritional values incluc
matter, energy and protein content and digestibility.
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Figure 3-2: (a) Digestible energy (kcal) and (thgestibleprotein(g) in one kilogram

fresh brown bear diet across different ecosystems. Error bars indicate the 95% confidence
interval. Ecosystem diets i ncl-cedtralAlbenteg fiFoot hi l
(Canada), AFl atheado r iGolambia{Cammdanaadghee i n sout hea
Greater Yellowstone Ecosystem (GYE, USA). For the GYE, we present the recent diets
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Hi st or i.Digdstible eahérgy iingl protein were estimated based on the proportion of

digestible dry matter intake obtained from food habit studies in these ecosystems

(McLellan and Hover 1995; Mattson et al. 1991; Munro et al. 200@inFet al. 2013)
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Figure 3-3: Percent digestible energy contribution per food item category (fresh diet

base) across ecosystems. Contribution was estimated based on the total digestible energy
in the diet. Ecosystem diets include: Foothills and Mountains ofeeggtal Alberta

(Canada), Flathead River drainage in British Columbia (Canada) and the Greater
Yellowstone Ecosystem (GYE, USA). For the GYE, we present the recent diets for both
mal e (Milgweem) and famdall@EFd@amabe, ) theecent o
aver age rQ@YeE-Awerhge,decestt) , ( fahistdrical die GY-lEi st or i cal o
diets



