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Habitat loss threatens the persistence of grizzly bears
(Ursus arctos) in the Rocky Mountains of Canada and the
United States (Clark, Paquet & Curlee, 1996; McLellan &
Banci, 1999). Identifying grizzly bear habitats is therefore
important. Habitat models and maps are essential for con-
servation and management planning, cumulative effects
assessments, and habitat-based population viability analyses

(Mladenoff et al., 1995; Boyce & McDonald, 1999). Two
principal approaches have been used for modeling grizzly
bear habitats: 1) a bottom-up food approach (Kansas &
Riddell, 1995; Mattson et al., 1999; Mattson 2000); and 2) a
top-down remote-sensing approach (Mace et al., 1996;
Mace et al., 1999; Boyce & Waller, 2000; Nielsen et al.,
2002). Management of grizzly bears in the four contiguous
mountain parks of Canada (Banff, Jasper, Kootenay, and
Yoho) is based on a habitat-effectiveness model that uses
the former method for classifying potential habitats (Gibeau,
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Abstract: We developed and compared three habitat models for estimating the relative probability of occurrence, by month,
for grizzly bears (Ursus arctos) in Jasper National Park (JNP), Alberta. These models included 1) a habitat map derived from
remote sensing Landsat imagery; 2) food-index models generated from the predicted occurrence of bear foods and assigned
monthly importance values; and 3) probabilistic food models representing the occurrence of each bear food. Resource selection
function (RSF) models for grizzly bears were generated using 3,924 global positioning system (GPS) radiotelemetry
locations and the above habitat models. Comparisons were made among RSF models, by month, using Akaike’s Information
Criterion (AIC). In all seven months (April to October), food-index models performed poorly. In April and July, the
remote-sensing habitat map predicted bears best, while the food-probability models performed best in the remaining five
months. Overall, we found substantial improvement by using food-probability models for predicting JNP grizzly bear
occurrence. Remote-sensing maps, although predictive, may not reveal underlying mechanisms and fail to recognize the
dynamic nature of seasonal grizzly bear habitats. The disconnect between food-index and food-probability models suggests
that monthly food importance values require additional parameterization. Development of spatial food models on phenologically
important scales more closely matches the resources and temporal scales at which animals perceive and use resources.
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Résumé : Nous avons développé et comparé trois modèles d’habitats dans le but d’estimer la probabilité relative de la
présence, à chaque mois, d’ours gizzly (Ursus arctos) dans le parc national de Jasper en Alberta. Ces modèles comprennent : 1)
une carte des habitats construite à partir des images satellitaires Landsat, 2) des modèles d’indices de nourriture (prédiction
de la présence de nourriture associée à une valeur d’importance pour chaque mois) et 3) des modèles de nourriture probabilistes
représentant la présence de chaque source de nourriture. Les modèles de fonction de sélection de ressources (FSR) pour les
ours grizzly ont été établis à partir de 3924 localisations radiotélémétriques déterminées par système de positionnement
géographique et à partir des modèles d’habitats décrits plus haut. Nous avons comparé les modèles FSR, par mois, en utilisant
les critères d’information Akaike. Les modèles d’indices de nourriture n’ont pas donné de bons résultats quelque soit le mois
considéré (avril à octobre). Pour les mois d’avril et de juillet, c’est la carte des images satellitaires qui a le mieux réussi à
prédire la présence d’ours, alors que pour les cinq autres mois, les modèles de probabilité de nourriture ont donné les
meilleurs résultats. En conclusion, l’utilisation de modèles de probabilité de nourriture apporte de nets avantages pour la
prédiction de la présence des ours dans le parc national de Jasper. Les cartes d’images satellitaires, bien qu’elles soient d’une
certaine utilité pour prédire la présence des ours, ne révèlent pas nécessairement les mécanismes sous-jacents et ne
permettent pas de reconnaître la nature dynamique des habitats saisonniers de l’ours grizzly. L’absence de relation entre les
modèles d’indices de nourriture et ceux de probabilité suggère qu’il serait préférable d’évaluer de nouveaux paramètres afin
de mieux quantifier l’importance de la nourriture des ours pour chaque mois. Les modèles spatiaux de nourriture utilisant des
échelles phénologiques appropriées se rapprochent beaucoup plus de la réalité perçue par les animaux lorsqu’il s’agit
d’utiliser les ressources d’un territoire.
Mots-clés : Alberta, ours grizzly (Ursus arctos), sélection de l’habitat, modélisation de l’habitat, parc national de Jasper,
phénologie, fonctions de sélection de ressources (FSR).
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1998; Anonymous, 1998). Habitat quality for this model is
based on the presence and abundance of 41 species of plant
foods from field vegetation plots and monthly importance
values within 135 ecological land survey vegetation types
(Kansas & Riddell, 1995). Recently, Nielsen et al. (2002)
found that such models predicted grizzly bear radioteleme-
try occurrence in west-central Alberta poorly.

In contrast to this bottom-up approach, grizzly bear
habitat models/maps have been developed for a number of
areas, most notably that of northwest Montana (Mace et al.,
1996; Mace et al., 1999), using remote-sensing data (vege-
tation classifications and habitat surrogates like greenness),
animal radiotelemetry locations, and habitat selection mod-
eling (Manly, McDonald & Thomas, 1993). This top-down
approach relies on geographical information system (GIS)
and remote-sensing data, which are readily available across
large spatial extents. Such information, when related to ani-
mal locations, can be used to produce predictions of animal
occurrence (i.e., GIS maps), useful for addressing conserva-
tion questions. These habitat models, however, require large
numbers of animal locations to train model estimates.
Furthermore, there is no reason to believe that GIS and
remote-sensing data are at the appropriate scale (spatial or
temporal) at which animals select resources or even that
such data are relevant (perceived) to the species (Lennon,
1999; Morrison, 2001). Researchers also often fail to recog-
nize or are unable to examine (due to low sample sizes)
phenological food seasons and therefore pool animal loca-
tion data (Schooley, 1994). Given these limitations, mecha-
nisms responsible for selection are not easily interpreted
(Garshelis, 2000; Morrison, 2001). Comparisons and impli-
cations of using food and remote-sensing-based habitat
models therefore need further examination.

In this paper, we develop and test the efficacy of food
and remote-sensing models for predicting grizzly bear
occurrence in Jasper National Park (JNP), Alberta. We
compare food models developed from 32 species of plant
foods to a more traditional habitat-relationship analysis that
uses a remotely sensed habitat classification. We attempt to
develop GIS models of direct resource gradients (food) per-
ceived and used by local grizzly bear populations. Herein,
we make four principal assumptions in the development and
testing of food models for comparison with remote-sensing
maps: 1) the most relevant factor influencing grizzly bear
habitat selection is food; 2) the vast majority of a grizzly
bear’s nutritional demand in the northern Rockies is met
through herbivorous feeding activities (Jacoby et al., 1999);
3) presence/absence of foods is sufficient to predict grizzly
bear occurrence, even though energetic or productivity
characteristics may be more reasonable and/or predictive
(Mattson et al., 1999; Mattson, 2000); and 4) monthly time
steps (scale at which importance values are available) are at
a sufficient temporal scale to cover phenological develop-
ments and use of bear foods. Due to these assumptions
and the possibility of habitat and terrain bias associated
with global positioning system (GPS) radiotelemetry data
(Dussault et al., 1999), we consider this paper more a
methodological test of the usefulness of different spatial
data for predicting grizzly bear occurrence than a calcula-
tion of robust habitat coefficients used for management and
conservation.

Methods

STUDY AREA

Our study was located in Jasper National Park
(10,878 km2) in west-central Alberta, Canada (52° 50’ N,
118° 00’ W) in the Front Ranges of the Canadian Rocky
Mountain Cordillera (Figure 1). Drainage pattern is influ-
enced strongly by topography and runs predominately
toward the Athabasca River, an Arctic watershed. Elevations
vary from 953 m near the town site of Jasper to 3,581 m in
the Columbia Icefield on the British Columbia-Alberta bor-
der. Alpine habitats typically begin at elevations ranging
between 1,900 mand 2,100 m, depending on soil moisture
(hygric to xeric) and aspect (La Roi & Hnatiuk, 1980),
while montane grasslands characteristically occur below
1,350 m in the Athabasca Valley (Holland & Coen, 1982).
Situated between these two open communities are areas of
forest, primarily composed of spruce (Picea spp.), fir (Abies
spp.) and lodgepole pine (Pinus contorta). Substantial areas
of rock and ice are found throughout the park, typically
above 2,400 m in elevation.

REMOTE SENSING HABITAT MAP

An Integrated Decision Tree (IDT) habitat classification
was generated for an area of west-central Alberta using a
September 1999 Landsat satellite image, a digital elevation
model (DEM), GIS vegetation inventories, and field ground-
truth sites (Franklin et al., 2001). This 30-m-resolution map
was produced for a grizzly bear study that covers a 2,300-km2

area of JNP (Figure 1) and a large area of adjacent foothill
habitats to the east. Using classified habitats from JNP, we
reclassified the original map into five principal vegetative
cover types common to the mountainous region of the study
area. These cover types included alpine, closed forests, open
conifer, shrub/wetland complexes, and non-vegetated habi-
tats (e.g., snow, rock, shadow, and water). An accuracy
assessment found accuracy of the original IDT map classifi-
cation to be 80.16% (Franklin et al., 2001).

FOOD-INDEX MODELS

We used 1,343 field vegetation plots established in
1977-1979 in JNP to predict bear plant foods used by grizzly
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FIGURE 1. Map of Jasper National Park in western Alberta, showing
principal towns, study boundary, and secondary study area where grizzly
bear RSF models were tested.



bears. In total, we recognized 32 species of potential plant
foods common to both JNP field data (prevalence > 5%) and
local food habitats studies (Kansas & Riddell, 1995). Using
logistic regression we developed predictive models for each
species, with 11 covariates from the Yellowhead Ecosystem
Working Group (YEWG) ecological land classification
(Gordon et al., 1998) and other existing GIS data (Table I;
Figure 2). These data include terrain, habitat, soil, and dis-
turbance history information. Elevation was estimated from
a 100-m digital elevation model (DEM), while hillshade
was estimated using the same DEM and the Spatial Analyst
extension in ArcView. Aspect and maximum slope were
set in the hillshade model to 225 and 45 degrees respective-
ly, thus representing local terrain site moisture (i.e., xeric
[SW slopes] to mesic [NE slopes]) characteristics (Nielsen &
Haney 1998; Nielsen et al., 2002). Habitat variables
included forest versus open sites and barren/unvegetated
versus vegetated areas. Initial analyses indicated that more
complex vegetation classifications were unnecessary.
Digital soil data were used to stratify major soil orders,
while soil drainage indices were used to represent soil
moisture conditions. Finally, to characterize stand ages for
forested sites, we included age since last fire. Interactions
were further explored for vegetation, age, and soil drainage,
while non-linear responses were examined for elevation and
soil drainage.

A grid size of 100 m was used for all environmental
data and resulting food models, as it was the largest grain
within our GIS. The 1,343 field vegetation plots were K-
fold partitioned (randomly divided) into a model training
(90%) and model testing (10%) dataset (special case,
K = 2), allowing for within-sample cross-validation (Fielding
& Bell, 1997). Model selection procedures for each species
followed a forward minimum-AIC selection method
(SWAIC) in STATA, where variables were added, based on
AIC scores, until parsimony was achieved (Burnham &
Anderson, 1998; Anderson, Burnham & Thompson, 2000).
Hosmer and Lemeshow’s (1980) goodness-of-fit statistic
( Ĉ ) and area-under-the-curve estimates from receiver oper-
ating characteristic (ROC) curves (Swets, 1988) were used
to assess model fit and performance for both model training
and model testing (validation) datasets. Model performance
was assessed for ROC scores based on three categories.
ROC values ranging between 0.5 and 0.7 were taken to rep-
resent low model accuracy, while values between 0.7 and
0.9 were considered good model accuracy and those above
0.9 indicated high model accuracy (Swets, 1988; Manel,
Williams & Ormerod, 2001).

Following model development, optimal probability cut-
off points for prediction of species presence were determined
through the optimization of sensitivity and specificity curves
from ROC plots (Zweig & Campbell, 1993). Given these
cut-off values, maps were generated for each species, where
species were either predicted present or absent in each
100-m pixel. Food importance values from Kansas and
Riddell (1995) were assigned to individual species, by
month per landscape pixel. Importance values for each
species and month ranged from seasonally “critical” foods
(value of 10) to food items phenologically not available or
used (value of 0). For each pixel, food importance values
were summed across species for each month (April to
October) to obtain final monthly food index values. Final food
indices were scaled (based on maximum monthly value) to
range between 0 (low importance) and 10 (high importance)
to match existing habitat-index models for the park. 

FOOD-PROBABILITY MODELS

As an alternative to food-index models that assume a
particular importance value for each species/month combi-
nation and assuming that the appropriate probability cut-off
value for prediction was chosen correctly, we maintained
the original probability function (0 to 1) for each species.
We then used species-specific food probability models in
each month as potential predictors of grizzly bear occur-
rence. Because logistic regression is sensitive to collineari-
ties among explanatory variables (Hosmer & Lemeshow,
1989), we excluded species that were highly correlated
(r > |0.75|) with species already included in models and
explaining variation. We verified that final model coeffi-
cients were unaffected by collinearity through the examina-
tion of variance inflation factors (VIF) using the REGRESS
and VIF functions in STATA on a randomly generated
dependent variable. Collinearity was assumed to be occur-
ring when individual VIF scores were greater than ten or the
mean of all VIFs was considerably larger than one
(Chatterjee, Hadi & Price, 2000). Final model selection pro-
cedures followed a forward minimum AIC selection.
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TABLE I. GIS predictor variables used for modeling the presence
of bear foods in Jasper National Park using logistic regression.
Data from the Yellowhead Ecosystem Working Group (YEWG)
ecological land classification (Gordon et al., 1998) were used as
well as other digital GIS data (e.g., digital elevation model
[DEM]).

Variable Response
Code Name Type GIS Data Source

hil hillshade continuous DEM spatial analyst hilshade 
model; 225º aspect and 45º 
slope = max

elv elevation continuous 100-m digital elevation model 
(DEM)

elv2 quadratic of continuous 100-m digital elevation
elevation model (DEM)

veg vegetation categorical reclassification of YEWG vegeta-
tion classification (forest versus 
open)

sdr soil drainage continuous YEWG soil drainage class

sdr2 quadratic continuous YEWG soil drainage class
of sdr

bar barren areas categorical reclassification of barren/unvege-
tated areas from vegetation
classification

bru brunisol categorical YEWG reclassification of soil 
soils order great group into brunisol/non-

brunisol soils

age successional continuous digital fire history data
age

veg*age interaction of continuous reclassed vegetation and fire history
veg and age layers

veg*sdr interaction of continuous reclassed vegetation and soil
veg and sdr drainage layers



GRIZZLY BEAR RADIOTELEMETRY DATA

In 1999 and 2000, we used aerial darting and leg snar-
ing techniques to capture and collar 10 grizzly bears (8
female and 2 male) in eastern JNP. Bears were fitted with
Televilt or ATS (Advanced Telemetry Systems) GPS radio-
collars. In total, 3,924 GPS radiolocations from the sec-
ondary study area were retrieved between April and October
of 1999 and 2000. Locations used for monthly model devel-
opment varied from 77 locations in April to 936 in June.
Because non-random errors from terrain and habitat inter-
ference were likely present in missing GPS data (Obbard,
Pond & Perera, 1998; Dussault et al., 1999; Rettie &
McLoughlin, 1999), interpretation of coefficients should be
viewed with caution. Model comparisons from the same
dataset, however, are considered robust. Minimum home
range convex polygons (100% MCP) were generated for
each bear for all data between 1999 and 2000. From these
home range polygons, available resources were generated
for comparisons with use locations using an equal-area
based (1 random point per home range ha) random sampling
of GIS environmental data (habitat models).

GRIZZLY BEAR RSF MODELING STRATEGY

We evaluated patch or third-order (Johnson, 1980)
resource selection, by month, for grizzly bears in JNP using
the above three habitat models (IDT remote-sensing habitat

map, food-index model, and food-probability model). Used
resources units from GPS radiotelemetry locations were
compared with random samples of available resource units
to obtain a resource selection function (RSF) using logistic
regression in the program STATA. RSF model structure fol-
lowed the form

w(x) = exp (β1x1 + β2x2+...+βkxk),                 [1]
where w(x) is the resource selection function and βi the
selection coefficient estimated for environmental predictors
xi (Manly, McDonald & Thomas, 1993). For the categorical
remote-sensing map, we used the most common habitat
cover class, non-vegetated areas, as the reference category.
Models were developed at the population level, pooling
sexes. We used the robust cluster method to calculate vari-
ances around each parameter (Nielsen et al., 2002). Using
such a method, we assume the unit of replication to be the
individual, not the telemetry location, thus avoiding pseudo-
replication/autocorrelation problems (Otis & White, 1999;
Nielsen et al., 2002). Three models (remote-sensing map,
food probability, and food index) for each month (one for
each habitat model) were generated and compared against
each other using an AIC information-theoretic model selec-
tion design (Anderson, Burnham & Thompson, 2000).
Models were AIC ranked (∆i) within each month, and the
relative likelihood of a model being the best, given the data
and models, was estimated using Akaike weights (wi).
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Results

FOOD-INDEX AND FOOD-PROBABILITY MODELS

Goodness-of-fit tests ( Ĉ ) for model training data con-
firmed agreement between the model and data for 25 of 32
species, while ROC values > 0.7 (representing good model
performance) occurred in 28 of 32 species (Table II). Six of
these 28 ROC values were > 0.9, indicating high model
accuracy. Validation of training models using withheld test-
ing data dropped the total number of fit species to 22, while
validated ROC estimates pointed to reasonable classification
accuracy for 25 of the 32 species. Five of these species had
high model accuracy. Common predictor variables chosen
for final AIC-selected models included elevation (linear and
non-linear responses), hillshade, age of stand, soil drainage
(linear and non-linear responses), and the interaction of veg-
etation and age (Table II). Using estimated coefficients from
each model, the probability of occurrence for each food
species was estimated across JNP using a GIS. An example
of a probability model, estimated for Shepherdia canaden-
sis), is illustrated in figure 3. Resulting probability maps, by
species, were subsequently used for estimating monthly griz-
zly bear occurrence (food-probability RSF models).

Using these same food models, optimal probability cut-
off values for each species were estimated from sensitivity
and specificity graphs from ROC calculations. Optimal cut-

off values ranged from 1.76% for Rubus idaeus to 35.77%
for Juniperus spp. (Table II). Based on these cut-off values,
the presence/absence of each species was estimated across
JNP using a reclassification of the original probability lev-
els in a GIS. Qualitative food values were assigned for each
species in each month (Kansas & Riddell, 1995) for predict-
ed (presence) grid cells resulting in monthly food-index
maps that were used for estimating grizzly bear occurrence
(food-index RSF models). Examination of monthly food-
index models revealed that the largest proportion of high-
quality habitats existed in the Athabasca River valley where
the greatest diversity of foods exists.

GRIZZLY BEAR RSF HABITAT MODEL COMPARISONS

Model assessments using AIC weights (wi) indicated
that food-index models developed for all seven months
inadequately described grizzly bear occurrence in JNP (all
months; wi < 0.001). By comparison, the food-probability
models and the remote-sensing model both performed sub-
stantially better than food-index models (Table III). In April
and July, the remote-sensing model had the greatest model
support within the candidate sets, at likelihoods of 80.4%
and 98.7% respectively. The predicted relative probability
of occurrence for grizzly bears in July, using the AIC-
selected remote-sensing model, is illustrated in figure 4.
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TABLE II. Comparison of model performance and fit for AIC-selected logistic regression models for 32 species of plants known to be
important grizzly bear foods in Jasper National Park. Model training data (90%), as well as model-testing data (10%), were used for
assessing models. Hosmer-Lemeshow goodness-of-fit criterion ( Ĉ) p-values are reported (pĈ), as well as area-under-curve estimates from
receiver operator characteristics (ROC). ROC values ranging from 0.7 to 0.9 were considered to have reasonably good model performance,
while ROC values exceeding 0.9 were considered to be highly accurate. Optimal probability cut-off point is the location where species
were predicted present or absent in GIS food-index models.

Optimal Model Training Model Testing

Species AIC Model Cut-off pĈ ROC pĈ ROC
Achillea millefolium hil+veg+age+veg*age 0.1399 0.654 0.674 0.750 0.713
Amelanchier alnifolia hil+elv2 0.0521 0.000 0.923 0.999 0.949
Arctostaphylos uva-ursi hil+elv+age+sdr 0.2072 0.926 0.814 0.018 0.734
Aster spp. hil+age+elv2 0.2326 0.607 0.876 0.000 0.772
Astragalus spp. sdr2 0.0689 0.649 0.668 0.088 0.520
Claytonia lanceolata veg+elv+elv2+sdr2 0.0391 0.968 0.860 0.312 0.975
Cornus stolonifera elv 0.0216 0.968 0.972 1.000 0.984
Empetrum nigrum hil+elv+elv2+sdr+bar+bru 0.1863 0.594 0.744 0.000 0.815
Equisetum arvense hil+elv2+sdr+veg*age 0.0787 0.774 0.703 0.880 0.762
Fragaria virginiana hil+veg+elv2+age+veg*age 0.2599 0.879 0.722 0.294 0.727
Hedysarum spp. hil+veg+sdr2+bar+bru+veg*sdr 0.1323 0.894 0.821 0.379 0.704
Heracleum lanatum hil+elv+elv2+age+veg*age 0.0290 0.112 0.795 0.042 0.793
Juniperus spp. hil+veg+elv+elv2+age+sdr+bar+bru+for*age+veg*sdr 0.3577 0.688 0.753 0.390 0.719
Lathyrus ochroleucus hil+elv+elv2+age+sdr2+bru+veg*age 0.0493 0.995 0.932 0.221 0.890
Lonicera spp. elv+elv2+age 0.0757 0.099 0.891 0.893 0.910
Ribes spp. hil+elv+elv2+bru 0.1161 0.921 0.791 0.409 0.890
Rosa acicularis hil+elv2+age+sdr+sdr2 0.2744 0.358 0.912 0.455 0.893
Rubus idaeus elv+elv2+age+veg*age 0.0176 0.251 0.833 0.868 0.922
Rubus spp. hil+elv+elv2+age+sdr+sdr2+bru 0.1040 0.019 0.711 0.691 0.700
Senecio triangularis hil+elv+elv2+age+sdr2+veg*age+veg*sdr 0.1351 0.040 0.811 0.825 0.727
Shepherdia canadensis hil+elv+elv2+age+sdr+sdr2 0.3860 0.327 0.866 0.483 0.847
Sorbus spp. hil+veg+elv+elv2+sdr+sdr2+veg*sdr 0.0339 0.304 0.820 0.966 0.890
Thalictrum spp. age+bar 0.0716 0.274 0.713 0.637 0.694
Vaccinium caespitosum veg*sdr 0.1798 0.023 0.674 0.172 0.667
Vaccinium membranaceum hil+bru+veg*age 0.2588 0.097 0.757 0.000 0.733
Vaccinium myrtillus veg*sdr 0.0271 0.326 0.695 0.000 0.678
Vaccinium scoparium elv+elv2+age+bru+veg*sdr 0.2453 0.011 0.733 0.000 0.695
Vaccinium vitis-idaea hil+veg+elv+elv2+age+sdr+veg*age 0.2375 0.105 0.732 0.020 0.785
Valeriana sitchensis hil+veg+elv+elv2+age+bar+bru+veg*age 0.1403 0.000 0.806 0.495 0.696
Veratrum eschscholtzii hil+elv+elv2+age+sdr2+bar+veg*age+veg*sdr 0.0538 0.781 0.826 0.000 0.646
Viburnum edule elv+elv2 0.1139 0.000 0.902 0.923 0.903
Vicia americana hil+elv+elv2 0.0689 0.399 0.929 0.000 0.755



Selection of classified remote-sensing habitat classes varied
substantially among months. For instance, bears were 14
times more likely (odds ratio) to use alpine habitats in July
than in May, while a substantial increase in selection of
shrub/wetland habitats was evident in September (Figure 5).

In five of seven months (May, June, August, September,
and October), food-probability models out performed
remote-sensing models. The relative likelihood of support
for these models was 100%, given the data and models tested.
Spatial predictions of the relative probability of occurrence
for grizzly bears in May and August using food-probability
models are illustrated in figure 4. As would be expected,
there were strong patterns of selection relating to the terrain
features, as large areas of rock and ice exist throughout the
park. The number of species, composition of species, and
the direction and magnitude of responses varied among
months (Table IV). The simplest model (June) contained the
species Achillea millefolium, Claytonia lanceolata,
Heracleum lanatum, and Thalictrum spp., while the most
complex model (August) included Astragalus spp.,
Claytonia lanceolata, Cornus stolonifera, Fragaria virgini-
ana, Hedysarum spp., Heracleum lanatum, Rubus idaeus,
Vaccinium scoparium, V. vitis-idaea, Valeriana sitchensis,
and Verartrum eschscholtzii. Foods that consistently con-
tributed to monthly grizzly bear RSF models included
Claytonia lanceolata, Astragalus spp., Hedysarum spp.,
Rubus idaeus, and Thalictrum spp. (Table IV). A number of
food-probability RSF models contained species with nega-
tive coefficients, indicating apparent avoidance or under-
sampling of areas associated with those foods. Other species
that were expected to show strong seasonal selection due to
locally recognized “critical” importance, such as Shepherdia
canadensis, failed to exhibit strong patterns of selection.

Discussion

Grizzly bear food resources in Jasper National Park
were principally related to elevation, hillshade, age of stand,
soil drainage, and the interaction of vegetation and age.
Non-linear responses were common for the variables eleva-
tion and soil drainage, with species optimizing at intermedi-
ate levels. Food-index maps produced from the predicted
presence of each species and monthly food values (Kansas
& Riddell, 1995) proved poor predictors of grizzly bear
occurrence. Food-probability models based on the same
data and models, however, were good predictors of grizzly
bear occurrence. The disconnect between food-index and
food-probability models may relate to inappropriate classifi-
cation thresholds (ROC) used for predicting species pres-
ence (Manel, Williams & Ormerod, 2001) or to problems
inherent in food importance values developed by Kansas
and Riddell (1995). The use of habitat-effectiveness models
in the four contiguous parks of Canada (Gibeau, 1998;
Hood & Parker, 2001) should consider further validation of
food-importance values or alternative modeling approaches
(e.g., RSF-based). We found for instance, substantial
improvement over food-index models in the prediction of
grizzly bear occurrence using a simple remote-sensing clas-
sification (Franklin et al., 2001).

Food-probability models demonstrated consistent suc-
cessful prediction of grizzly bear occurrence, with model
evidence highest in five of seven months (May, June,
August, September, and October). Coefficients from these
models may be useful surrogates of food-importance values.
The remote-sensing habitat model was favoured in April
and July. We are uncertain why the July remote-sensing
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FIGURE 3. Probability of occurrence for Shepherdia canadensis in
Jasper National Park based on variables hillshade, elevation (non-linear),
stand age, and soil drainage (non-linear).

TABLE III. A comparison of habitat GIS models used for predict-
ing the relative occurrence of grizzly bears (resource selection
functions) in Jasper National Park (JNP), Alberta. Models were
assessed through the ranking of AIC values (∆i ) and weights (wi )
describing the likelihood of the model. Model complexity (number
of parameters) is represented by Ki. Models were compared
among months (April to October). The IDT (Integrated Decision
Tree) model represented a Landsat-TM-based habitat cover map.
Food-probability models (by month) were derived from AIC-
selected (minimum AIC, forward selection) predictive food mod-
els from the 32 available resources (plant species). Food-index
models represent qualitative indices (0-10) of food values for pre-
dicted food items (from probability models) by month following
Kansas and Riddell (1995).

Month Model Ki AIC ∆i wi

April IDT Model 4 504.08 0 0.804
Food-Probability Model 4 506.91 2.83 0.195
Food-Index Model 2 519.25 15.17 < 0.001

May Food-Probability Model 10 3,404.82 0 1.000
IDT Model 5 3,668.58 263.76 < 0.001
Food-Index Model 2 3,784.44 379.62 < 0.001

June Food-Probability Model 5 3,838.76 0 1.000
IDT Model 5 3,867.08 28.32 < 0.001
Food-Index Model 2 4,106.2 267.44 < 0.001

July IDT Model 5 3,210.56 0 0.987
Food-Probability Model 13 3,219.27 8.71 0.013
Food-Index Model 2 3,700.02 489.46 < 0.001

August Food-Probability Model 12 3,192.04 0 1.000
IDT Model 5 3,225.08 33.04 < 0.001
Food-Index Model 2 3,664.3 472.26 < 0.001

September Food-Probability Model 10 1,529.12 0 1.000
IDT Model 5 1,673.24 144.12 < 0.001
Food-Index Model 2 1,753.54 224.42 < 0.001

October Food-Probability Model 8 1,435.6 0 1.000
IDT Model 5 1,570.94 135.34 < 0.001
Food-Index Model 2 1,772.56 336.96 < 0.001
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TABLE IV. Estimated model parameters for AIC-selected grizzly bear food-probability resource selection function (RSF) models describing
grizzly bear occurence for Jasper National Park. Coefficients and standard errors (in parentheses) are presented by species.

Month
Species April May June July August September October
Achillea millefolium 12.11 (1.50) 3.49 (0.89) 6.53 (2.93)
Amelanchier alnifolia
Arctostaphylos uva-ursi -3.45 (1.18) -9.98 (1.76)
Aster spp.
Astragalus spp. 21.79 (10.78) 16.26 (4.91) 24.82 (23.97)
Claytonia lanceolata 11.72 (9.61) 19.41 (2.00) 8.07 (1.54) 20.41 (5.72) 16.95 (2.42) 24.02 (5.45) 26.41(2.84)
Cornus stolonifera -1,749.97 (1,199.85) -2,999.03 (523.52) -1,089.26 (221.90) -2,349.92 (2,285.87)
Empetrum nigrum -4.29 (4.27)
Equisetum arvense 10.37 (6.35) 9.73 (2.05)
Fragaria virginiana -2.99 (1.05)
Hedysarum spp. 2.30 (0.76) 2.80 (1.18) 2.03 (1.01) 3.84 (2.66)
Heracleum lanatum -9.62 (2.98) -23.14 (10.47) -59.80 (8.88)
Juniperus spp. 2.42 (0.49) -4.01 (2.22) 2.06 (0.61)
Lathyrus ochroleucus -11.51 (4.93) 39.81 (15.53)
Lonicera spp.
Ribes spp. 9.13 (10.84)
Rosa acicularis
Rubus idaeus 184.83 (88.53) 272.84 (42.63)
Rubus spp. 5.19 (4.84)
Senecio triangularis -2.38 (1.31)
Shepherdia canadensis 5.795 (1.340)
Sorbus spp.
Thalictrum spp. 9.85 (3.40) 23.25 (2.00)
Vaccinium cespitosum 30.25 (11.01)
Vaccinium membranaceum
Vaccinium myrtillus 96.98 (30.58)
Vaccinium scoparium 9.09 (1.80) 5.77 (0.62)
Vaccinium vitis-idaea 2.09 (1.88) 8.08 (1.05)
Valeriana sitchensis 12.14 (1.12)
Veratrum eschscholtzii 3.69 (1.15) 2.91 (3.61) -3.44 (1.97) -6.71 (6.14) -18.34 (12.11)
Viburnum edule
Vicia americana

a) May b) July c) August

10 2010 0 30 40 50 km

Relative probability

Low

Medium

High

 of occurence
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FIGURE 4. Example of final AIC-selected resource selection function (RSF) models for the secondary study area in eastern Jasper National Park, Alberta.
The three months depicted are a) May, b) July, and c) August. July predictions are based on a remote-sensing vegetation map, while both May (a) and
August (c) illustrate predictions based on food-probability models.



model was more useful, when the importance of plant foods
during this period should be substantial. Berries begin to
become available during this time and succulent vegetation
is near its optimum. Lack of support for July food models
was also consistent with model assessments made by
Kansas and Riddell (1995). In an examination of remotely
sensed habitat classes and bear locations, it was apparent
that selection during July was most evident for alpine habi-
tats (Figure 5). Because plant foods are scarce in April, it
was less surprising to find lack of support for food models
during this period.

Due to limitations in GIS data, we were forced to
impose a spatial grain (minimum mapping unit) of 100 m
for food models. Although this appeared to work reasonably
well for simple presence/absence data, more complex food
measures, such as food productivity, density, or cover, may
be too variable to be modeled at such a large spatial grain.
Food microsites, such as patches of Equisetum arvense in
small wet seeps, were not likely represented well at this
scale and with currently used GIS and remote-sensing data.
Habitat quality surrogates, such as a tasseled cap greenness
transformation from remote-sensing data, may be useful for
mapping such microsites if used with high-resolution multi-
spectral sensors such as IKONOS or ASTER.

Fundamental food resources used by grizzly bears
appear to be phenologically driven at temporal scales rarely
addressed in previous habitat selection studies (see, howev-
er, Mattson, 2000). We found selection of resources and
habitats to be highly variable temporally. Analyzing selec-
tion of habitats and/or resources for longer periods (i.e., 2-
or 4-season models) likely will mask important selection
processes operating at finer scales (Schooley, 1994).
Avoidance of some food items thought to be important a
priori, such as Cornus stolonifera, was apparent in model
estimates. Such foods tended to correlate with low elevation
sites in the Athabasca River valley, where sample grizzly
bear locations were largely absent and thus may have influ-
enced final model estimates. Interpretation of coefficients
for species like Cornus stolonifera, having large negative
values, should therefore be viewed with caution. However,

most grizzly bear plant foods used for food-probability RSF
models correspond well with feeding observations and feces
examinations for regional grizzly bear populations (Holcroft
& Herrero, 1984; Hamer & Herrero, 1987; Hamer, Herrero
& Brady, 1991; Hamer, 1996). Incorporation of non-plant
foods, especially ants, carrion, and ungulate calves, should
be further explored to increase food model accuracy and
realism. This seems particularly relevant for male grizzly
bears, because their diets tend to contain larger contribu-
tions of meat (Jacoby et al., 1999). We pooled all animals
(sexes, ages, etc.) in these analyses, which may have affect-
ed parameter estimates and variances. Strong variation in
habitat selection among individuals has been described in
this population (Nielsen et al., 2002). Further caution
should be given to the interpretation and use of coefficients
because they may be affected by GPS fix acquisition bias
associated with terrain and habitat structure (Dussault et al.,
1999) and because covariates obtained from GIS contained
unknown measurement errors.

Indirect GIS and remotely sensed data have been relied
upon for prediction of landscape-scale grizzly bear habitats
(Mace et al., 1996; Mace et al., 1999; Boyce & Waller,
2000; Nielsen et al., 2002). The tasseled cap greenness
transformation (Crist & Cicone, 1984; Manley, Ake &
Mace, 1992) has been shown, for example, to be a strong
predictor of grizzly bear occurrence. However, there is little
information on what greenness actually represents beyond
high vegetative reflectance and leaf-area index (White et
al., 1997; Waring & Running, 1998). Mechanistic links are
needed to describe whether relationships exist with grizzly
bear foods and/or fitness. Understanding such relationships
will better facilitate use of habitat models for conservation
and management planning. We believe that incorporation of
direct food models, especially under phenological scales, is
an important development for grizzly bear habitat modeling.
Such direct resource gradients more closely correspond to
the resources perceived and used by the animal.
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